How to use the igraph.read function in igraph

To help you get started, we’ve selected a few igraph examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Lab41 / Circulo / circulo / algorithms / congo.py View on Github external
When this option is present with no parameters, defaults to 'label'. When the option is not
                            present, defaults to the index.""")
    parser.add_argument('-n', '--num_clusters', type=int, help="""Specify the number of clusters to use.""")
    parser.add_argument('-w', '--height', default=2, type=int, help="""The lengh of the longest shortest paths that CONGO considers.""")
    parser.add_argument('file', nargs='?', help="""The path to the file in igraph readable format.""")
    args = parser.parse_args()
    if args.demo:
        run_demo()
        return
    if not args.file:
        print("CONGO.py: error: no file specified.\n")
        print(parser.parse_args('-h'.split()))
        return

    # only works for undirected
    G = ig.read(args.file).as_undirected()
    result = congo(G, args.height)
    if args.num_clusters:
        result.pretty_print_cover(args.num_clusters, label=args.label)
    else:
        result.pretty_print_cover(result.optimal_count, label=args.label)
github neurodata / m2g / MR-OCP / MROCPdjango / computation / utils / igraph_to_csc.py View on Github external
parser.add_argument("-g", "--gen_graph", action="store_true", help="Generate a new ER graph")
  parser.add_argument("-n", "--num_nodes", action="store", type=int, help="The number of nodes in the ER graph")
  parser.add_argument("-p", "--probability", action="store", type=float, help="The probability of connectivity of each node to another in the graph")
  parser.add_argument("-s", "--save", action="store_true", help="Save conversion to disk")
  parser.add_argument("-f", "--save_fn", action="store", default="csc_matlab", help="Save file name")

  parser.add_argument("-t", "--test", action="store_true", help="Run test only!")

  result = parser.parse_args()

  if result.test:
    test()
    exit(1)

  if os.path.exists(result.graph_fn):
    g = igraph.read(result.graph_fn, format="gml")

  elif result.gen_graph or result.num_nodes or result.probability:
    assert (result.gen_graph and result.num_nodes and result.probability), "You must set all ER parameters i.e. n, p"
    g = igraph.Graph.Erdos_Renyi(n=result.num_nodes, p=result.probability)
    igraph.write(g, result.save_fn+".gml", format="gml")

  else:
    sys.stderr.writelines("Invalid path %s ... and all (i.e. n, p, g) ER parameters not set so no action taken. \n EXITING NOW! \n")
    exit(-1)

  igraph_to_csc(g, result.save, result.save_fn)
github Lab41 / Circulo / circulo / algorithms / conga.py View on Github external
parser.add_argument('-l', '--label', default='CONGA_index', nargs='?', const='label', help="""Choose which attribute of the graph to print.
                            When this option is present with no parameters, defaults to 'label'. When the option is not
                            present, defaults to the index.""")
    parser.add_argument('file', nargs='?', help="""The path to the file in igraph readable format.""")
    args = parser.parse_args()

    if args.demo:
        run_demo()
        return
    if not args.file:
        print("conga.py: error: no file specified.\n")
        print(parser.parse_args('-h'.split()))
        return

    # only works for undirected
    G = ig.read(args.file).as_undirected()
    result = conga(G, calculate_modularities=args.modularity_measure, optimal_count=args.num_clusters)
    result.pretty_print_cover(result.optimal_count, label=args.label)
github sujitpal / mlia-examples / src / enron_network / graph_analyzer.py View on Github external
def main():
  G = ig.read("enron.gml")
  run_all_hypotheses(G, 1000, None)
  run_all_hypotheses(G, 1000, prune_enron_only(G))
  run_all_hypotheses(G, 1000, prune_with_nonenron_collaborators_only(G))
github sujitpal / mlia-examples / src / enron_network / graph_plotter.py View on Github external
def main():
  G = ig.read("enron.gml")
  #plot_degree_distrib(G)
  plot_pruned_graph(G, 250)
github networkit / networkit / benchmark / ig.py View on Github external
def loadGraph(self, path):
		G = igraph.read(path, format="gml")
		return G
github neurodata / m2g / MR-OCP / mrcap / utils / igraph_io.py View on Github external
do_del = False
  if os.path.splitext(fn)[1] == ".zip":
    fn = unzip_file(fn)
    do_del = True
  elif os.path.splitext(fn)[1] == ".gz":
    fn = untar_file(fn)
    do_del = True

  start = time()
  try:
    if (headers_only):
      g = read_graphml_headers(fn)
      print "   Fast read took %.3f sec .." % ((time()-start))
    else: assert 0
  except:
    g = igraph_read(fn, format=informat)
    print "   Read took %.3f sec ..." % ((time()-start))
  finally:
    if do_del: 
      print "Deleting temp %s" % fn
      os.remove(fn)
  return g
github neurodata / m2g / MR-OCP / MROCPdjango / computation / utils / convertTo.py View on Github external
def convert_graph(gfn, informat, save_dir, *outformats):
  """
  Convert between igraph supported formats. No conversion to MAT or NPY available.

  Positional arguments:
  ====================

  gfn - the graph file name
  informat - the input format of the graph
  save_dir - the directory where we save result to
  outformat - a list of output formats
  """
  try:
    if informat in ["graphml", "ncol", "edgelist", "lgl", "pajek", "graphdb"]:
      g = igraph.read(gfn, None)
    elif informat == "mat":
      g = csc_to_igraph(loadAnyMat(gfn))
    elif informat == "npy":
      g = csc_to_igraph(np.load(gfn).item())
    elif informat == "attredge":
      g = attredge_to_igraph(gfn)
    else:
      err_msg = "[ERROR]: Unknown format '%s'. Please check format and retry!" % informat
      print err_msg
      return (None, err_msg)
  except Exception, err_msg:
    print err_msg
    return (None, "[ERROR]: "+str(err_msg))

  out_err_msg = ""
  fn = ""
github sujitpal / mlia-examples / src / network_analysis / cool_unusual.py View on Github external
def q7():
  G = read_gdf("../../data/network_analysis/MiddleEastern.gdf")
  nx.write_gml(G, "/tmp/MiddleEastern.gml")
  G = ig.read("/tmp/MiddleEastern.gml")
  bcs = G.betweenness()
  labels = [v["label"] for v in G.vs()]
  label_bcs = sorted(zip(labels, bcs), key=operator.itemgetter(1), reverse=True)
  ingredient_set = set(["coriander", "garlic", "walnut", "dill"])
  print [x for x in label_bcs if x[0] in ingredient_set]
github sujitpal / mlia-examples / src / network_analysis / cool_unusual.py View on Github external
def q4():
  G = ig.read("../../data/network_analysis/dolphins.gml")
  nodes = [int(v["id"]) for v in G.vs]
  bcs = G.betweenness()
  it = sorted(zip(nodes, bcs), key=operator.itemgetter(1), reverse=True)[0][0]
  print "Dolphin with highest betweenness =", G.vs[it]["label"]