How to use the igraph.Graph.Read_GraphML function in igraph

To help you get started, we’ve selected a few igraph examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github gralog / gralog / gralog-fx / src / main / java / gralog / gralogfx / piping / scripts / Gralog.py View on Github external
def toIgraph(self):
		grlgML_file = open("tmp.graphml","w")
		grlgML_file.write(self.toXml())
		grlgML_file.close()
		g_ig = ig.Graph.Read_GraphML("tmp.graphml")
		os.remove("tmp.graphml")
		return g_ig
github igraph / igraph / nexus / cgi-bin / nexus.py View on Github external
def graphml_to_excel(self, id):
        return
        nets=model.get_networks(id)
        if len(nets) > 1:
            return              # TODO
        if nets[0].vertices >= 65536 or nets[0].edges >= 65536:
            return
        inputfile = model.get_dataset_filename(id)
        inputfile = os.path.join("..", "data", id, 
                                 os.path.basename(inputfile))
        graphmlext=model.get_format_extension('GraphML')
        excelext=model.get_format_extension('Excel')
        ungzip('%s%s' % (inputfile, graphmlext))
        g=igraph.Graph.Read_GraphML(inputfile + graphmlext)
        os.unlink('%s%s' % (inputfile, graphmlext))

        ds=list(model.get_dataset(id))[0]
        
        wb=xlwt.Workbook()

        ## The network
        tags=list(model.get_tags(id))
        papers=list(model.get_papers(id))
        sh1=wb.add_sheet('Network')
        sh1.write(0, 0, 'Name')
        sh1.write(0, 1, ds.name)
        sh1.write(1, 0, 'Vertices')
        sh1.write(1, 1, ds.minv)
        sh1.write(2, 0, 'Edges')
        sh1.write(2, 1, ds.mine)
github SergiuTripon / msc-thesis-na-epsrc / analysis / src / calc.py View on Github external
def calc_basic_stats(path):

        # variable to hold network
        ig_network = ig.Graph.Read_GraphML('../../data/networks/{}/network.graphml'.format(path))

        # variable to hold network1
        nx_network = nx.read_graphml('../../data/networks/{}/network.graphml'.format(path))

        # variables to hold selectables
        network_summary = ig_network.summary()
        node_weights = ig_network.vs["Num"]
        node_attr = ig_network.vertex_attributes()
        node_degrees = ig_network.degree()
        degree_dist = ig_network.degree_distribution()
        edge_weights = ig_network.es["weight"]
        edge_attr = ig_network.edge_attributes()

        # variables to hold stats
        node_count = ig_network.vcount()
        edge_count = ig_network.ecount()
github SergiuTripon / msc-thesis-na-epsrc / analysis / src / analysis.py View on Github external
def plot_community_overview_manually():

    # variables to hold path
    path = 'topics/current/network-a'
    edge_type = 'wnn'
    method = 'louvain'

    # variable to hold network
    network = ig.Graph.Read_GraphML('../../data/networks/{}/network/graphml/'
                                    '{}/{}/membership.graphml'.format(path, edge_type, method))

    # variable to hold membership
    membership = network.vs['membership']

    # variable to hold edges
    edges = [edge for edge in network.es() if membership[edge.tuple[0]] != membership[edge.tuple[1]]]

    # delete edges
    network.delete_edges(edges)

    # variable to hold visual style
    visual_style = {'vertex_label': network.vs['label'],
                    'vertex_size': network.vs['plot_size'],
                    'edge_width': network.es['plot_weight'],
                    'layout': 'kk',
github doolin / patentprocessor / postprocess / DVN.py View on Github external
D = DVN.DVN(filepath='/home/ayu/DVN/', dbnames=['patent', 'invpat', 'citation', 'class'], graphml = ['pat_2000.graphml', 'pat_2003.graphml'])
        D.summary()
        D.create_csv_file()
        """
        self.filepath = filepath
        self.data = {}
        self.graphs = {}
        self.begin = begin
        self.end = end
        self.increment = increment
        for dbname in dbnames:
            self.data[dbname] = SQLite.SQLite(filepath + dbname + '.sqlite3', dbname)
        if graphml:
            i = 0
            for year in range(self.begin, self.end, self.increment):
                self.graphs[year] = igraph.Graph.Read_GraphML(filepath+graphml[i])
                i = i + 1
github SergiuTripon / msc-thesis-na-epsrc / analysis / src / network.py View on Github external
def analyse_network(edge_type, method, attr, threshold, path):

    # variable to hold network
    network = ig.Graph.Read_GraphML('../../data/networks/{}/network/graphml/network.graphml'.format(path))

    ####################################################################################################################

    # rename columns
    network = rename_columns(network)

    ####################################################################################################################

    # if attributes equals to all
    if attr == 'all':
        # add normalized node number column to network
        network.vs['norm_num'] = norm_vals(network.vs['num'], 20, 60)
        # add normalized node value column to network
        network.vs['norm_val'] = norm_vals(network.vs['val'], 20, 60)
        # add normalized edge weight column to network
        network.es['norm_weight'] = norm_vals(network.es['weight'], 1, 10)
github igraph / igraph / nexus / cgi-bin / nexus.py View on Github external
def check_graphml(self, ds, networks, filename, tags, meta):
        res=odict.odict()

        ## File exists
        ex=os.path.exists(filename)
        res['Data file exists'] = ex
        if not ex:
            return res

        ## File can be loaded
        try:
            tmp=os.path.join(tempfile.gettempdir(), "nexus")
            shutil.rmtree(tmp, ignore_errors=True)
            os.mkdir(tmp)
            os.system("unzip -d %s %s" % (tmp, filename))
            g=dict((n.sid, igraph.Graph.Read_GraphML('%s/%s.GraphML' % 
                                                     (tmp, n.sid)))
                   for n in networks)
            res['Data file can be loaded'] = True
            shutil.rmtree(tmp)
        except Exception, x:
            print str(x)
            res['Data file can be loaded'] = False
            return res

        res.update(self._check_igraph_graph(g, ds, networks, filename, 
                                            tags, meta))
        return res
github gralog / gralog / gralog-layout / python / layout_python_ET.py View on Github external
import networkx as nx
import igraph as ig
import Gralog as Gralog

n = 0
### import graph ## GRALOG ###
g           = Gralog.Graph(None)
gralog_xml  = g.getGraph("xml")
grlgML_file = open("tmp.graphml","w")
grlgML_file.write(gralog_xml)
grlgML_file.close()
graph       = "tmp.graphml"
g.message("load")

### import graph to ## IGRAPH + NX ###
g_ig    = ig.Graph.Read_GraphML(graph)
g_nx    = nx.read_graphml(graph)

### compute center of point cloud ###
doc = ET.parse(graph)
nodes = doc.getroot().find('graph').findall('node')
x, y = [float(nodes[i].attrib['x']) for i in range(len(nodes))], [float(nodes[i].attrib['y']) for i in range(len(nodes))]
center = (int(sum(x)/len(x)), int(sum(y)/len(y)))
g.message("center: "+str(center))

### Compute new coords + write into graphml-file ## ET ###
nx_layouts  = [nx.circular_layout(g_nx,10), nx.shell_layout(g_nx,None,7,None,2),
                nx.spring_layout(g_nx,None,None, None,50,1e-4,None,7),
                nx.kamada_kawai_layout(g_nx,None,None,'weight',10,None,2),
                nx.spectral_layout(g_nx,'weight',20,None,2)]
nx_lay      = nx_layouts[n]
nx_doc      = ET.parse(graph)