How to use the hyperactive.RandomSearchOptimizer function in hyperactive

To help you get started, we’ve selected a few hyperactive examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github SimonBlanke / Hyperactive / tests / test_xgboost.py View on Github external
def test_xgboost_n_iter():
    from hyperactive import RandomSearchOptimizer

    n_iter_list = [0, 1, 1, 10]
    for n_iter in n_iter_list:
        opt = RandomSearchOptimizer(search_config, n_iter)
        opt.fit(X, y)
        opt.predict(X)
        opt.score(X, y)
github SimonBlanke / Hyperactive / tests / test_multiprocessing.py View on Github external
def test_RandomSearchOptimizer():
    from hyperactive import RandomSearchOptimizer

    opt0 = RandomSearchOptimizer(
        search_config, n_iter_0, random_state=random_state, verbosity=0, cv=cv, n_jobs=1
    )
    opt0.fit(X, y)

    opt1 = RandomSearchOptimizer(
        search_config,
        n_iter_1,
        random_state=random_state,
        verbosity=0,
        cv=cv,
        n_jobs=n_jobs,
    )
    opt1.fit(X, y)

    assert opt0.score_best < opt1.score_best
github SimonBlanke / Hyperactive / tests / test_catboost.py View on Github external
def test_catboost_memory():
    from hyperactive import RandomSearchOptimizer

    memory_list = [False, True]
    for memory in memory_list:
        opt = RandomSearchOptimizer(search_config, 1, memory=memory)
        opt.fit(X, y)
        opt.predict(X)
        opt.score(X, y)
github SimonBlanke / Hyperactive / tests / test_catboost.py View on Github external
def test_catboost():
    from hyperactive import RandomSearchOptimizer

    opt = RandomSearchOptimizer(search_config, 1)
    opt.fit(X, y)
    opt.predict(X)
    opt.score(X, y)
github SimonBlanke / Hyperactive / tests / test_catboost.py View on Github external
ml_scores = [
        "accuracy_score",
        "balanced_accuracy_score",
        "average_precision_score",
        "brier_score_loss",
        "f1_score",
        "log_loss",
        "precision_score",
        "recall_score",
        "jaccard_score",
        "roc_auc_score",
    ]

    for score in ml_scores:
        opt = RandomSearchOptimizer(search_config, 1, metric=score)
        assert opt._config_.metric == score
        opt.fit(X, y)
        assert opt._config_.metric == score
        opt.predict(X)
        assert opt._config_.metric == score
        opt.score(X, y)
        assert opt._config_.metric == score
github SimonBlanke / Hyperactive / tests / test_arguments_api.py View on Github external
def test_random_state():
    from hyperactive import RandomSearchOptimizer

    opt0 = RandomSearchOptimizer(search_config, 1, random_state=False)
    opt0.fit(X, y)

    opt1 = RandomSearchOptimizer(search_config, 1, random_state=0)
    opt1.fit(X, y)

    opt2 = RandomSearchOptimizer(search_config, 1, random_state=1)
    opt2.fit(X, y)
github SimonBlanke / Hyperactive / tests / test_catboost.py View on Github external
def test_catboost_warm_start():
    from hyperactive import RandomSearchOptimizer

    warm_start = {
        "catboost.CatBoostClassifier": {
            "iterations": [3],
            "learning_rate": [1],
            "depth": [3],
            "verbose": [0],
        }
    }

    warm_start_list = [None, warm_start]
    for warm_start in warm_start_list:
        opt = RandomSearchOptimizer(search_config, 1, warm_start=warm_start)
        opt.fit(X, y)
        opt.predict(X)
        opt.score(X, y)
github SimonBlanke / Hyperactive / tests / test_arguments_api.py View on Github external
def test_n_jobs_4():
    from hyperactive import RandomSearchOptimizer

    opt = RandomSearchOptimizer(search_config, 1, n_jobs=4)
    opt.fit(X, y)
github SimonBlanke / Hyperactive / tests / test_arguments_api.py View on Github external
def test_n_jobs_1():
    from hyperactive import RandomSearchOptimizer

    opt = RandomSearchOptimizer(search_config, 1, n_jobs=1)
    opt.fit(X, y)
github SimonBlanke / Hyperactive / examples / example_basic.py View on Github external
from sklearn.datasets import load_iris

from hyperactive import RandomSearchOptimizer

iris_data = load_iris()
X, y = iris_data.data, iris_data.target

search_config = {
    "sklearn.ensemble.RandomForestClassifier": {"n_estimators": range(10, 100, 10)}
}

opt = RandomSearchOptimizer(search_config, n_iter=10)
opt.fit(X, y)