Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_EvolutionStrategyOptimizer():
from hyperactive import EvolutionStrategyOptimizer
opt0 = EvolutionStrategyOptimizer(
search_config, n_iter_0, random_state=random_state, verbosity=0, cv=cv, n_jobs=1
)
opt0.fit(X, y)
opt1 = EvolutionStrategyOptimizer(
search_config,
n_iter_1,
random_state=random_state,
verbosity=0,
cv=cv,
n_jobs=n_jobs,
)
opt1.fit(X, y)
assert opt0.score_best < opt1.score_best
def test_EvolutionStrategyOptimizer():
from hyperactive import EvolutionStrategyOptimizer
opt0 = EvolutionStrategyOptimizer(
search_config, n_iter_0, random_state=random_state, verbosity=0, cv=cv, n_jobs=1
)
opt0.fit(X, y)
opt1 = EvolutionStrategyOptimizer(
search_config,
n_iter_1,
random_state=random_state,
verbosity=0,
cv=cv,
n_jobs=n_jobs,
)
opt1.fit(X, y)
assert opt0.score_best < opt1.score_best
ParticleSwarmOptimizer,
EvolutionStrategyOptimizer,
BayesianOptimizer,
)
_ = HillClimbingOptimizer(search_config, 1)
_ = StochasticHillClimbingOptimizer(search_config, 1)
_ = TabuOptimizer(search_config, 1)
_ = RandomSearchOptimizer(search_config, 1)
_ = RandomRestartHillClimbingOptimizer(search_config, 1)
_ = RandomAnnealingOptimizer(search_config, 1)
_ = SimulatedAnnealingOptimizer(search_config, 1)
_ = StochasticTunnelingOptimizer(search_config, 1)
_ = ParallelTemperingOptimizer(search_config, 1)
_ = ParticleSwarmOptimizer(search_config, 1)
_ = EvolutionStrategyOptimizer(search_config, 1)
_ = BayesianOptimizer(search_config, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
# this defines the model and hyperparameter search space
search_config = {
"xgboost.XGBClassifier": {
"n_estimators": range(30, 200, 10),
"max_depth": range(1, 11),
"learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0],
"subsample": np.arange(0.05, 1.01, 0.05),
"min_child_weight": range(1, 21),
"nthread": [1],
}
}
opt = EvolutionStrategyOptimizer(search_config, n_iter=10, n_jobs=4)
# search best hyperparameter for given data
opt.fit(X_train, y_train)
# predict from test data
prediction = opt.predict(X_test)
# calculate score
score = opt.score(X_test, y_test)
print("\ntest score of best model:", score)