Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
self.obj_b_sid = 0
self.tar_t_sid = 0
self.tar_b_sid = 0
self.pen_length = 1.0
self.tar_length = 1.0
curr_dir = os.path.dirname(os.path.abspath(__file__))
mujoco_env.MujocoEnv.__init__(self, curr_dir+'/assets/DAPG_pen.xml', 5)
# change actuator sensitivity
self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:] = np.array([10, 0, 0])
self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:] = np.array([1, 0, 0])
self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:] = np.array([0, -10, 0])
self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:] = np.array([0, -1, 0])
utils.EzPickle.__init__(self)
self.target_obj_bid = self.sim.model.body_name2id("target")
self.S_grasp_sid = self.sim.model.site_name2id('S_grasp')
self.obj_bid = self.sim.model.body_name2id('Object')
self.eps_ball_sid = self.sim.model.site_name2id('eps_ball')
self.obj_t_sid = self.sim.model.site_name2id('object_top')
self.obj_b_sid = self.sim.model.site_name2id('object_bottom')
self.tar_t_sid = self.sim.model.site_name2id('target_top')
self.tar_b_sid = self.sim.model.site_name2id('target_bottom')
self.pen_length = np.linalg.norm(self.data.site_xpos[self.obj_t_sid] - self.data.site_xpos[self.obj_b_sid])
self.tar_length = np.linalg.norm(self.data.site_xpos[self.tar_t_sid] - self.data.site_xpos[self.tar_b_sid])
self.act_mid = np.mean(self.model.actuator_ctrlrange, axis=1)
self.act_rng = 0.5*(self.model.actuator_ctrlrange[:,1]-self.model.actuator_ctrlrange[:,0])
def __init__(self,
goal_reward=10,
actuation_cost_coeff=30.0,
distance_cost_coeff=1.0,
init_sigma=0.1):
EzPickle.__init__(**locals())
self.dynamics = PointDynamics(dim=2, sigma=0)
self.init_mu = np.zeros(2, dtype=np.float32)
self.init_sigma = init_sigma
self.goal_positions = np.array(
(
(5, 0),
(-5, 0),
(0, 5),
(0, -5)
),
dtype=np.float32)
self.goal_threshold = 1.0
self.goal_reward = goal_reward
self.action_cost_coeff = actuation_cost_coeff
self.distance_cost_coeff = distance_cost_coeff
contype="1",
conaffinity="1",
condim="3",
)
_, file_path = tempfile.mkstemp(text=True)
tree.write(file_path)
# self._goal_range = self._find_goal_range()
self._cached_segments = None
# import pdb;pdb.set_trace()
class_type.__init__(self, model_path=file_path)
utils.EzPickle.__init__(self)
def __init__(self):
utils.EzPickle.__init__(self)
mujoco_env.MujocoEnv.__init__(self, 'ant_bandits.xml', 5)
# self.realgoal = self.np_random.uniform(low=0, high=5, size=2)
self.realgoal = np.array([5, 0]) if np.random.uniform() < 0.5 else np.array([0, 5])
# self.realgoal = np.array([5, 0])
# data structure for modeling delays in observation and action
self.observation_buffer = []
self.action_buffer = []
self.obs_delay = 0
self.act_delay = 0
self.cur_step = 0
self.use_sparse_reward = False
self.horizon = 999
self.total_reward = 0
mujoco_env.MujocoEnv.__init__(self, 'hopper.xml', 4)
utils.EzPickle.__init__(self)
def __init__(self,
xml_file='half_cheetah.xml',
forward_reward_weight=1.0,
ctrl_cost_weight=0.1,
reset_noise_scale=0.1,
exclude_current_positions_from_observation=True):
utils.EzPickle.__init__(**locals())
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation)
mujoco_env.MujocoEnv.__init__(self, xml_file, 5)
def __init__(self, model_path=os.path.dirname(gym.envs.mujoco.__file__) + "/assets/pusher.xml", **kwargs):
mujoco_env.MujocoEnv.__init__(self, model_path, 5)
utils.EzPickle.__init__(self)
# make sure we're using a proper OpenAI gym Mujoco Env
assert isinstance(self, mujoco_env.MujocoEnv)
self.model.jnt_range = self.get_and_modify_joint_range('r_shoulder_pan_joint')
self.model._compute_subtree()
self.model.forward()
def __init__(self):
mujoco_env.MujocoEnv.__init__(self, 'ant.xml', 5)
utils.EzPickle.__init__(self)
def __init__(self,
xml_file='hopper.xml',
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=1.0,
terminate_when_unhealthy=True,
healthy_state_range=(-100.0, 100.0),
healthy_z_range=(0.7, float('inf')),
healthy_angle_range=(-0.2, 0.2),
reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True,
rgb_rendering_tracking=True):
utils.EzPickle.__init__(**locals())
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._healthy_reward = healthy_reward
self._terminate_when_unhealthy = terminate_when_unhealthy
self._healthy_state_range = healthy_state_range
self._healthy_z_range = healthy_z_range
self._healthy_angle_range = healthy_angle_range
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation)