How to use the grafanalib.weave.prometheus.PromGraph function in grafanalib

To help you get started, we’ve selected a few grafanalib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
title=title,
        repeat=POD_TYPE_VARIABLE.lstrip("$") if pod_type else "",
        panels=[
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="CPU",
                expressions=[
                    dict(expr=reduction('sum', metric(m, selection), selection),
                         legendFormat=title)
                    for m, title in [('cpus_limit', 'Available')]
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="Memory",
                expressions=[
                    dict(expr=reduction('sum', metric(m, selection), selection),
                         legendFormat=title)
                    for m, title in [('mem_total', 'Used'),
                                     ('mem_limit', 'Available')]
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format=G.BYTES_FORMAT, decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="Disk [PLACEHOLDER]",
                expressions=[
github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
return G.Row(
        title="Scheduler statistics",
        panels=[
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="cumulative offer statistic",
                expressions=[
                    {"expr": sum(service_metric(m)), "legendFormat": m}
                    for m in offer_metrics
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="offer events per second [{} rate]".format(resolution),
                expressions=[
                    {
                        "expr": sum(service_metric(m, "rate", resolution)),
                        "legendFormat": m,
                    }
                    for m in offer_metrics
                ],
                span=3,
                steppedLine=True,
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="offer processing time",
                expressions=[
github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="offer events per second [{} rate]".format(resolution),
                expressions=[
                    {
                        "expr": sum(service_metric(m, "rate", resolution)),
                        "legendFormat": m,
                    }
                    for m in offer_metrics
                ],
                span=3,
                steppedLine=True,
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="offer processing time",
                expressions=[
                    {"expr": sum(service_metric(m)), "legendFormat": m}
                    for m in offer_timers
                ],
                span=3,
                yAxes=G.YAxes(left=G.YAxis(format="ns")),
            ),
github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
"""
    Construct a Grafana row containing scheduler task statistics
    """
    task_metrics = [
        "task_status_task_running",
        "task_status_task_finished",
        "task_status_task_lost",
        "task_status_task_failed",
    ]

    resolution = "1m"

    return G.Row(
        title="Task statistics",
        panels=[
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="cumulative task statistic",
                expressions=[
                    {"expr": sum(service_metric(m)), "legendFormat": m}
                    for m in task_metrics
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="task events per second [{} rate]".format(resolution),
                expressions=[
                    {
                        "expr": sum(service_metric(m, "rate", resolution)),
github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
"declines_short",
    ]

    resolution = "1m"

    offer_timers = [
        "offers_process_p50",
        "offers_process_p90",
        "offers_process_p99",
        "offers_process_max",
    ]

    return G.Row(
        title="Scheduler statistics",
        panels=[
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="cumulative offer statistic",
                expressions=[
                    {"expr": sum(service_metric(m)), "legendFormat": m}
                    for m in offer_metrics
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="offer events per second [{} rate]".format(resolution),
                expressions=[
                    {
                        "expr": sum(service_metric(m, "rate", resolution)),
github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
return G.Row(
        title="Task statistics",
        panels=[
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="cumulative task statistic",
                expressions=[
                    {"expr": sum(service_metric(m)), "legendFormat": m}
                    for m in task_metrics
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="task events per second [{} rate]".format(resolution),
                expressions=[
                    {
                        "expr": sum(service_metric(m, "rate", resolution)),
                        "legendFormat": m,
                    }
                    for m in task_metrics
                ],
                span=3,
                steppedLine=True,
            ),
github mesosphere / spark-build / scale-tests / sdk.dashboard.py View on Github external
yAxes=G.YAxes(left=G.YAxis(format="short", decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="Memory",
                expressions=[
                    dict(expr=reduction('sum', metric(m, selection), selection),
                         legendFormat=title)
                    for m, title in [('mem_total', 'Used'),
                                     ('mem_limit', 'Available')]
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format=G.BYTES_FORMAT, decimals=0)),
            ),
            W.prometheus.PromGraph(
                data_source=PROMETHEUS_DATA_SOURCE,
                title="Disk [PLACEHOLDER]",
                expressions=[
                    dict(expr=reduction('sum', metric(m, selection), selection),
                         legendFormat=title)
                    for m, title in [('disk_used', 'Used'),
                                     ('disk_limit', 'Available')]
                ],
                span=3,
                steppedLine=True,
                yAxes=G.YAxes(left=G.YAxis(format=G.BYTES_FORMAT, decimals=0)),
            ),