How to use the grafanalib.core.YAxis function in grafanalib

To help you get started, we’ve selected a few grafanalib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
def network_usage(datasource):
    return G.Graph(
        title="Network Usage",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                # 2^20 bytes / second
                format="MBs",
                label="Transferred",
            ),
            G.YAxis(
                show=False,
            ),
        ],
        targets=[
            G.Target(
                # Get the rate of data received on the public interface (eth0)
                # for each entire node (id="/") over the last minute.
                expr="""
                receive:container_network_bytes:rate1m / 2 ^ 20
                """,
                legendFormat="receive",
github weaveworks / grafanalib / grafanalib / core.py View on Github external
def single_y_axis(**kwargs):
    """Specify that a graph has a single Y axis.

    Parameters are those passed to `YAxis`. Returns a `YAxes` object (i.e. a
    pair of axes) that can be used as the yAxes parameter of a graph.
    """
    axis = YAxis(**kwargs)
    return YAxes(left=axis)
github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
def s4_customer_deployments(datasource):
    return G.Graph(
        title="Customer Deployments",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                format="none",
                label="Total Customer Deployments",
                min=0,
                max=100,
            ),
            G.YAxis(
                show=False,
            ),
        ],

        targets=[
            G.Target(
                # Each replicaset and pod end up with their own series.  Label
                # these more succinctly.  Leave them distinct in case it is
                # interesting to see where restarts have happened.
                expr="""
github weaveworks / grafanalib / grafanalib / weave.py View on Github external
def PercentUnitAxis(label=None):
    """A Y axis that shows a percentage based on a unit value."""
    return G.YAxis(
        format=G.PERCENT_UNIT_FORMAT,
        label=label,
        logBase=1,
        max=1,
        min=0,
    )
github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
def memory_usage(datasource):
    return G.Graph(
        title="Memory Usage",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                # 2 ^ 30 bytes
                format="gbytes",
                label="Memory",
            ),
            G.YAxis(
                show=False,
            ),
        ],
        targets=[
            G.Target(
                expr="""
                sum(machine_memory_bytes) / 2 ^ 30
                """,
                legendFormat="Total Physical Memory",
                refId="A",
            ),
            G.Target(
                expr="""
                rss:container_memory:total / 2 ^ 30
                """,
                legendFormat="Total Container RSS",
github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
for i in count():
            yield unicode(i)
    refid = refidgen()


    return G.Graph(
        title="Tahoe-LAFS Benchmarked Transfer Rate",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                format="Bps",
                label="Transfer Rate",
            ),
            G.YAxis(
                show=False,
            ),
        ],

        targets=list(
            G.Target(
                # The metric is a Histogram.  The _sum goes up by the number of
                # bytes/second observed by each sample taken.  For example, if
                # the first benchmark run observes 100 bytes/sec transfer
                # rate, the _sum is 100.  If the second benchmark run observes
                # 75 bytes/sec transfer rate, the _sum is then 175.  The
                # _count gives the total number of samples present in the
                # _sum.
                #
                # The rate() of the _sum over a recent interval is
                # bytes/sec/sec.  The rate() of the _count over the same
github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
def filesystem_usage(datasource):
    return G.Graph(
        title="Filesystem Usage",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                format="percent",
            ),
            G.YAxis(
                show=False,
            ),
        ],
        targets=[
            G.Target(
                # Get the proportion used of each filesystem on a volume from
                # a PersistentVolumeClaim on each node of the cluster.  It's
                # hard to figure out the role each filesystem serves from this
                # graph (since all we get is the PVC name).  Better than
                # nothing, though.  Hopefully later we can do better.
                expr="""
                100
                * filesystem_used_bytes{volume=~"pvc-.*"}
github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
def cpu_usage(datasource, intervals):
    return G.Graph(
        title="CPU usage",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                format="percent",
                label="Average",
                min=0,
                max=100,
            ),
            G.YAxis(
                format="percent",
                label="Average",
            ),
        ],
        targets=list(
            G.Target(
                # CPU usage (as a percentage of maximum possible) averaged
                # over a period is given as 100 times the sum (over all
                # containers) of the rate of increase (in seconds) divided by
                # the maximum possible increase (1 second per CPU).
github LeastAuthority / leastauthority.com / k8s / monitoring / grafana-dashboards.py View on Github external
def filesystem_usage(datasource):
    return G.Graph(
        title="Filesystem Usage",
        dataSource=datasource,

        xAxis=X_TIME,
        yAxes=[
            G.YAxis(
                format="percent",
            ),
            G.YAxis(
                show=False,
            ),
        ],
        targets=[
            G.Target(
                # Get the proportion used of each filesystem on a volume from
                # a PersistentVolumeClaim on each node of the cluster.  It's
                # hard to figure out the role each filesystem serves from this
                # graph (since all we get is the PVC name).  Better than
                # nothing, though.  Hopefully later we can do better.
                expr="""
                100
                * filesystem_used_bytes{volume=~"pvc-.*"}
                / filesystem_size_bytes{volume=~"pvc-.*"}
                """,
                legendFormat="{{volume}}",