How to use the geojson.Point function in geojson

To help you get started, we’ve selected a few geojson examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github jazzband / geojson / tests / test_coords.py View on Github external
def test_featurecollection(self):
        p1 = geojson.Feature(geometry=geojson.Point((-115.11, 37.11)))
        p2 = geojson.Feature(geometry=geojson.Point((-115.22, 37.22)))
        itr = coords(geojson.FeatureCollection([p1, p2]))
        pairs = list(itr)
        self.assertEqual(pairs[0], (-115.11, 37.11))
        self.assertEqual(pairs[1], (-115.22, 37.22))
github jazzband / geojson / tests / test_validation.py View on Github external
def test_valid_jsonobject(self):
        point = geojson.Point((-10.52, 2.33))
        self.assertEqual(point.is_valid, True)
github jazzband / geojson / tests / test_validation.py View on Github external
def test_invalid_geometrycollection(self):
        point = geojson.Point((10, 20))
        bad_poly = geojson.Polygon([[(2.38, 57.322), (23.194, -20.28),
                                   (-120.43, 19.15), (25.44, -17.91)]])

        geom_collection = geojson.GeometryCollection(
                geometries=[point, bad_poly]
            )
        self.assertFalse(geom_collection.is_valid)
github erdc / quest / dsl / services / coops_pyoos.py View on Github external
parameter_value = parameters_dict.get(parameter)
                    # print 'parameter_value = %s' % parameter_value
                    if (self._checkParameter(location, parameter_value)):
                        self.COOPS.variables = ['http://mmisw.org/ont/cf/parameter/%s' % parameter_value]
                        if parameter_value == 'water_surface_height_above_reference_datum':
                            self.COOPS.dataType = data_type
                            self.COOPS.datum = datum
                        response = self.COOPS.raw(responseFormat="text/csv", timeout=DEFAULT_TIMEOUT)
                        df = pd.read_csv(StringIO(response))
                        if df.empty:
                            print('No data found')
                            data_files[location][parameter] = None
                            continue
                            
                        row = df.ix[0]
                        geometry = Point((float(row['longitude (degree)']),
                                        float(row['latitude (degree)'])))
                        station_id = row['station_id']
                        location_id = station_id.split(':')[-1]

                        metadata = {'noaa_station_id': station_id,
                                    'noaa_sensor_id': row['sensor_id']
                                    }
                        df.index = pd.to_datetime(df['date_time'])
                        df.drop(df.columns[:5], axis=1, inplace=True)

                        filename = os.path.join(path, 'coops_stn_%s_%s.json' % (location, parameter))
                        data_files[location][parameter] = filename
                        io.write(filename, location_id=location_id, geometry=geometry, dataframe=df, metadata=metadata)
                else:
                    data_files[location][parameter] = None
github nocproject / noc / gis / map.py View on Github external
def find_nearest(self, point, layers):
        """
        Find and return nearest object
        :param point: GeoJSON Point or tuple of (x, y) or (x, y, srid)
        :param layers: List of layer instances or layer names
        """
        # Normalize point
        if isinstance(point, tuple):
            point = geojson.Point(coordinates=[point[0], point[1]])
            if len(point) == 3:
                point = self.transform(point, point[2], self.db_proj)
        q = {"point__near": point}
        if isinstance(layers, list):
            q["layer__in"] = layers
        else:
            q["layer"] = layers
        for o in Object.objects.filter(**q)[:1]:
            return o
        return None
github zentralwerkstatt / locbook / locbook.py View on Github external
def write_geojson(p, popup_content, filename):
    with open(filename, 'w') as f:
        properties = {'popupContent': popup_content}
        features = [gj.Feature(geometry=gj.Point(p), properties=properties)]
        f.write(gj.dumps(gj.FeatureCollection(features)))
    f.close()
github TedYav / HadCRUT3-Visualization / oldparse.py View on Github external
def stationToGeojson(station, period, headersOnly = False):
	# negative Longitude in data is East, in MapBox it's West
	point = geojson.Point((-1 * station['Long'],station['Lat']))
	stationProperties = generateProperties(station, period, headersOnly)
	feature = geojson.Feature(geometry = point, properties=stationProperties) if 'exclude' not in stationProperties else None
	printv("FEATURE ENCODING COMPLETE, id: %s\t station: %20s\t" % (station['Number'], station['Name']))
	return feature
github ekansa / open-context-py / opencontext_py / apps / ocitems / ocitem / spatialtemporal.py View on Github external
tile_bounds = gmt.quadtree_to_lat_lon(geotile)
                    item_polygon = Polygon([[(tile_bounds[1], tile_bounds[0]),
                                             (tile_bounds[1], tile_bounds[2]),
                                             (tile_bounds[3], tile_bounds[2]),
                                             (tile_bounds[3], tile_bounds[0]),
                                             (tile_bounds[1], tile_bounds[0])
                                             ]])
                    item_f_poly = Feature(geometry=item_polygon)
                    item_f_poly.id = geo_node_derived
                    item_f_poly.geometry.id = geo_node_derived_geom
                    item_f_poly.properties.update(geo_props)
                    item_f_poly.properties['location-note'] = 'This region defines the '\
                                                              'approximate location for this item.'
                    item_f_poly.properties['id'] = geo_node_derived_props
                    features_dict[geo_node_derived] = item_f_poly
                    item_point = Point((float(geo.longitude), float(geo.latitude)))
                    item_f_point = Feature(geometry=item_point)
                    item_f_point.id = geo_node
                    item_f_point.geometry.id = geo_node_geom
                    item_f_point.properties.update(geo_props)
                    item_f_point.properties['location-note'] = 'This point defines the center of the '\
                                                               'region approximating the location for this item.'
                    item_f_point.properties['id'] = geo_node_props
                    features_dict[geo_node] = item_f_point
                elif len(geo.coordinates) > 1:
                    # here we have geo_json expressed features and geometries to use
                    if geo.specificity < 0:
                        geo_props['location-precision-note'] = 'Location data approximated as a security precaution.'
                    elif geo.specificity > 0:
                        geo_props['location-precision-note'] = 'Location data has uncertainty.'
                    else:
                        geo_props['location-precision-note'] = 'Location data available with no '\
github mapbox / mapboxgl-jupyter / mapboxgl / utils.py View on Github external
def row_to_geojson(row, lon, lat, precision, date_format='epoch'):
    """Convert a pandas dataframe row to a geojson format object.  Converts all datetimes to epoch seconds.
    """

    # Let pandas handle json serialization
    row_json = json.loads(row.to_json(date_format=date_format, date_unit='s'))
    return geojson.Feature(geometry=geojson.Point((round(row_json[lon], precision), round(row_json[lat], precision))),
                           properties={key: row_json[key] for key in row_json.keys() if key not in [lon, lat]})
github erdc / quest / dsl / services / example.py View on Github external
def get_locations(self, bbox=None):
        #get 100 random locations
        if not bbox:
            bbox = self.metadata['bbox']

        x1, y1, x2, y2 = bbox
        locations = [_random_point(bbox) for i in range(100)]

        points = []
        for location in locations:
            properties = {'parameter': 'Temperature', 'units': 'degF', 'site_code': int(random()*1000000)}
            points.append(Feature(geometry=Point(location), properties=properties, id=properties['site_code']))

        return FeatureCollection(points)