Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
self.add_module("mask_fcn{}".format(k + 1), conv)
self.conv_norm_relus.append(conv)
self.deconv = ConvTranspose2d(
conv_dims if num_conv > 0 else input_channels,
conv_dims,
kernel_size=2,
stride=2,
padding=0,
)
num_mask_classes = 1 if cls_agnostic_mask else num_classes
self.predictor = Conv2d(conv_dims, num_mask_classes, kernel_size=1, stride=1, padding=0)
for layer in self.conv_norm_relus + [self.deconv]:
weight_init.c2_msra_fill(layer)
# use normal distribution initialization for mask prediction layer
nn.init.normal_(self.predictor.weight, std=0.001)
if self.predictor.bias is not None:
nn.init.constant_(self.predictor.bias, 0)
num_branch=num_branch,
test_branch_idx=test_branch_idx,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
if layer is not None: # shortcut can be None
weight_init.c2_msra_fill(layer)
norm=get_norm(norm, conv_dim),
activation=F.relu,
)
self.add_module("conv{}".format(k + 1), conv)
self.conv_norm_relus.append(conv)
self._output_size = (conv_dim, self._output_size[1], self._output_size[2])
self.fcs = []
for k in range(num_fc):
fc = nn.Linear(np.prod(self._output_size), fc_dim)
self.add_module("fc{}".format(k + 1), fc)
self.fcs.append(fc)
self._output_size = fc_dim
for layer in self.conv_norm_relus:
weight_init.c2_msra_fill(layer)
for layer in self.fcs:
weight_init.c2_xavier_fill(layer)
dilation=dilation,
deformable_groups=deform_num_groups,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
if layer is not None: # shortcut can be None
weight_init.c2_msra_fill(layer)
nn.init.constant_(self.conv2_offset.weight, 0)
nn.init.constant_(self.conv2_offset.bias, 0)