How to use the fvcore.common.file_io.PathManager.mkdirs function in fvcore

To help you get started, we’ve selected a few fvcore examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github facebookresearch / fvcore / tests / test_file_io.py View on Github external
with self.assertRaises(ValueError):
            PathManager.copy(
                self._tmpfile, self._tmpfile, foo="foo"  # type: ignore
            )
        with self.assertRaises(ValueError):
            PathManager.exists(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.get_local_path(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.isdir(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.isfile(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.ls(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.mkdirs(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.open(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.rm(self._tmpfile, foo="foo")  # type: ignore

        PathManager.set_strict_kwargs_checking(False)

        PathManager.copy(
            self._tmpfile, self._tmpfile, foo="foo"  # type: ignore
        )
        PathManager.exists(self._tmpfile, foo="foo")  # type: ignore
        PathManager.get_local_path(self._tmpfile, foo="foo")  # type: ignore
        PathManager.isdir(self._tmpfile, foo="foo")  # type: ignore
        PathManager.isfile(self._tmpfile, foo="foo")  # type: ignore
        PathManager.ls(self._tmpdir, foo="foo")  # type: ignore
        PathManager.mkdirs(self._tmpdir, foo="foo")  # type: ignore
github facebookresearch / fvcore / tests / test_file_io.py View on Github external
self._remote_uri, self._remote_uri, foo="foo"  # type: ignore
            )
        with self.assertRaises(NotImplementedError):
            PathManager.exists(self._remote_uri, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.get_local_path(
                self._remote_uri, foo="foo"  # type: ignore
            )
        with self.assertRaises(NotImplementedError):
            PathManager.isdir(self._remote_uri, foo="foo")  # type: ignore
        with self.assertRaises(NotImplementedError):
            PathManager.isfile(self._remote_uri, foo="foo")  # type: ignore
        with self.assertRaises(NotImplementedError):
            PathManager.ls(self._remote_uri, foo="foo")  # type: ignore
        with self.assertRaises(NotImplementedError):
            PathManager.mkdirs(self._remote_uri, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.open(self._remote_uri, foo="foo")  # type: ignore
        with self.assertRaises(NotImplementedError):
            PathManager.rm(self._remote_uri, foo="foo")  # type: ignore

        PathManager.set_strict_kwargs_checking(False)

        PathManager.get_local_path(self._remote_uri, foo="foo")  # type: ignore
        f = PathManager.open(self._remote_uri, foo="foo")  # type: ignore
        f.close()
        PathManager.set_strict_kwargs_checking(True)
github facebookresearch / fvcore / tests / test_file_io.py View on Github external
with self.assertRaises(ValueError):
            PathManager.open(self._tmpfile, foo="foo")  # type: ignore
        with self.assertRaises(ValueError):
            PathManager.rm(self._tmpfile, foo="foo")  # type: ignore

        PathManager.set_strict_kwargs_checking(False)

        PathManager.copy(
            self._tmpfile, self._tmpfile, foo="foo"  # type: ignore
        )
        PathManager.exists(self._tmpfile, foo="foo")  # type: ignore
        PathManager.get_local_path(self._tmpfile, foo="foo")  # type: ignore
        PathManager.isdir(self._tmpfile, foo="foo")  # type: ignore
        PathManager.isfile(self._tmpfile, foo="foo")  # type: ignore
        PathManager.ls(self._tmpdir, foo="foo")  # type: ignore
        PathManager.mkdirs(self._tmpdir, foo="foo")  # type: ignore
        f = PathManager.open(self._tmpfile, foo="foo")  # type: ignore
        f.close()

        with open(os.path.join(self._tmpdir, "test_rm.txt"), "w") as f:
            rm_file = f.name
            f.write(self._tmpfile_contents)
            f.flush()
        PathManager.rm(rm_file, foo="foo")  # type: ignore
github facebookresearch / detectron2 / detectron2 / evaluation / coco_evaluation.py View on Github external
def evaluate(self):
        if self._distributed:
            comm.synchronize()
            self._predictions = comm.gather(self._predictions, dst=0)
            self._predictions = list(itertools.chain(*self._predictions))

            if not comm.is_main_process():
                return {}

        if len(self._predictions) == 0:
            self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
            return {}

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir, "instances_predictions.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(self._predictions, f)

        self._results = OrderedDict()
        if "proposals" in self._predictions[0]:
            self._eval_box_proposals()
        if "instances" in self._predictions[0]:
            self._eval_predictions(set(self._tasks))
        # Copy so the caller can do whatever with results
        return copy.deepcopy(self._results)
github facebookresearch / detectron2 / detectron2 / evaluation / sem_seg_evaluation.py View on Github external
* Pixel Accuracy (pACC)
        """
        if self._distributed:
            synchronize()
            conf_matrix_list = all_gather(self._conf_matrix)
            self._predictions = all_gather(self._predictions)
            self._predictions = list(itertools.chain(*self._predictions))
            if not is_main_process():
                return

            self._conf_matrix = np.zeros_like(self._conf_matrix)
            for conf_matrix in conf_matrix_list:
                self._conf_matrix += conf_matrix

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir, "sem_seg_predictions.json")
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(self._predictions))

        acc = np.zeros(self._num_classes, dtype=np.float)
        iou = np.zeros(self._num_classes, dtype=np.float)
        tp = self._conf_matrix.diagonal()[:-1].astype(np.float)
        pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float)
        class_weights = pos_gt / np.sum(pos_gt)
        pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float)
        acc_valid = pos_gt > 0
        acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
        iou_valid = (pos_gt + pos_pred) > 0
        union = pos_gt + pos_pred - tp
        iou[acc_valid] = tp[acc_valid] / union[acc_valid]
        macc = np.sum(acc) / np.sum(acc_valid)
github facebookresearch / detectron2 / detectron2 / engine / defaults.py View on Github external
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the detectron2 logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (CfgNode): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    setup_logger(output_dir, distributed_rank=rank, name="fvcore")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info(
            "Contents of args.config_file={}:\n{}".format(
                args.config_file, PathManager.open(args.config_file, "r").read()
            )
        )
github facebookresearch / detectron2 / detectron2 / utils / logger.py View on Github external
abbrev_name=str(abbrev_name),
            )
        else:
            formatter = plain_formatter
        ch.setFormatter(formatter)
        logger.addHandler(ch)

    # file logging: all workers
    if output is not None:
        if output.endswith(".txt") or output.endswith(".log"):
            filename = output
        else:
            filename = os.path.join(output, "log.txt")
        if distributed_rank > 0:
            filename = filename + ".rank{}".format(distributed_rank)
        PathManager.mkdirs(os.path.dirname(filename))

        fh = logging.StreamHandler(_cached_log_stream(filename))
        fh.setLevel(logging.DEBUG)
        fh.setFormatter(plain_formatter)
        logger.addHandler(fh)

    return logger
github facebookresearch / detectron2 / detectron2 / evaluation / lvis_evaluation.py View on Github external
def evaluate(self):
        if self._distributed:
            comm.synchronize()
            self._predictions = comm.gather(self._predictions, dst=0)
            self._predictions = list(itertools.chain(*self._predictions))

            if not comm.is_main_process():
                return

        if len(self._predictions) == 0:
            self._logger.warning("[LVISEvaluator] Did not receive valid predictions.")
            return {}

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir, "instances_predictions.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(self._predictions, f)

        self._results = OrderedDict()
        if "proposals" in self._predictions[0]:
            self._eval_box_proposals()
        if "instances" in self._predictions[0]:
            self._eval_predictions(set(self._tasks))
        # Copy so the caller can do whatever with results
        return copy.deepcopy(self._results)