How to use the freqtrade.vendor.qtpylib.indicators.bollinger_bands function in freqtrade

To help you get started, we’ve selected a few freqtrade examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github freqtrade / freqtrade / user_data / hyperopts / test_hyperopt.py View on Github external
# Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        """

        # Overlap Studies
        # ------------------------------------

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        """
        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # SMA - Simple Moving Average
github freqtrade / freqtrade / freqtrade / optimize / default_hyperopt.py View on Github external
dataframe['adx'] = ta.ADX(dataframe)
        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)
        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        # Minus-DI
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        # SAR
        dataframe['sar'] = ta.SAR(dataframe)

        return dataframe
github freqtrade / freqtrade / freqtrade / strategy / default_strategy.py View on Github external
# Minus Directional Indicator / Movement
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        # EMA - Exponential Moving Average
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)

        return dataframe
github freqtrade / freqtrade / user_data / hyperopts / sample_hyperopt.py View on Github external
dataframe['adx'] = ta.ADX(dataframe)
        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)
        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        # Minus-DI
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        # SAR
        dataframe['sar'] = ta.SAR(dataframe)

        return dataframe
github freqtrade / freqtrade-strategies / user_data / strategies / berlinguyinca / Low_BB.py View on Github external
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        ##################################################################################
        # buy and sell indicators

        bollinger = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=2
        )
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # dataframe['cci'] = ta.CCI(dataframe)
        # dataframe['mfi'] = ta.MFI(dataframe)
        # dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)

        # dataframe['canbuy'] = np.NaN
github freqtrade / freqtrade-strategies / user_data / strategies / Strategy003.py View on Github external
dataframe['mfi'] = ta.MFI(dataframe)

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']

        # EMA - Exponential Moving Average
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)

        return dataframe
github freqtrade / freqtrade-strategies / user_data / strategies / berlinguyinca / EMASkipPump.py View on Github external
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """ Adds several different TA indicators to the given DataFrame
        """

        dataframe['ema_{}'.format(self.EMA_SHORT_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_SHORT_TERM
        )
        dataframe['ema_{}'.format(self.EMA_MEDIUM_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_MEDIUM_TERM
        )
        dataframe['ema_{}'.format(self.EMA_LONG_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_LONG_TERM
        )

        bollinger = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=2
        )
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        dataframe['min'] = ta.MIN(dataframe, timeperiod=self.EMA_MEDIUM_TERM)
        dataframe['max'] = ta.MAX(dataframe, timeperiod=self.EMA_MEDIUM_TERM)

        return dataframe
github freqtrade / freqtrade-strategies / user_data / strategies / berlinguyinca / CombinedBinHAndCluc.py View on Github external
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        mid, lower = bollinger_bands(dataframe['close'], window_size=40, num_of_std=2)
        dataframe['mid'] = np.nan_to_num(mid)
        dataframe['lower'] = np.nan_to_num(lower)
        dataframe['bbdelta'] = (dataframe['mid'] - dataframe['lower']).abs()
        dataframe['pricedelta'] = (dataframe['open'] - dataframe['close']).abs()
        dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=5)
        rsiframe = DataFrame(dataframe['rsi']).rename(columns={'rsi': 'close'})
        dataframe['emarsi'] = ta.EMA(rsiframe, timeperiod=5)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['adx'] = ta.ADX(dataframe)
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=50)
        return dataframe
github freqtrade / freqtrade-strategies / user_data / strategies / berlinguyinca / CCIStrategy.py View on Github external
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe = self.resample(dataframe, self.ticker_interval, 5)

        dataframe['cci_one'] = ta.CCI(dataframe, timeperiod=170)
        dataframe['cci_two'] = ta.CCI(dataframe, timeperiod=34)
        dataframe['rsi'] = ta.RSI(dataframe)
        dataframe['mfi'] = ta.MFI(dataframe)

        dataframe['cmf'] = self.chaikin_mf(dataframe)

        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        return dataframe