Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
qtpylib.crossed_above(dataframe['macd'], dataframe['macdsignal']) &
(dataframe['cci'] <= -50.0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 1
return dataframe
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['adx'] = ta.ADX(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
qtpylib.crossed_above(dataframe['maMedium'], dataframe['maShort'])
),
'sell'] = 1
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
##################################################################################
# buy and sell indicators
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=20, stds=2
)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# dataframe['cci'] = ta.CCI(dataframe)
# dataframe['mfi'] = ta.MFI(dataframe)
# dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)
# dataframe['canbuy'] = np.NaN
# dataframe['canbuy2'] = np.NaN
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['ema_high'] = ta.EMA(dataframe, timeperiod=5, price='high')
dataframe['ema_close'] = ta.EMA(dataframe, timeperiod=5, price='close')
dataframe['ema_low'] = ta.EMA(dataframe, timeperiod=5, price='low')
stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe['adx'] = ta.ADX(dataframe)
# required for graphing
bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['bb_middleband'] = bollinger['mid']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['adx'] < 25) &
(qtpylib.crossed_above(dataframe['long'], dataframe['short']))
),
'sell'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
# Prod
(
(qtpylib.crossed_above(dataframe['rsi'], 50)) &
(dataframe['macd'] < 0) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['sar'] > dataframe['close']) &
(dataframe['fisher_rsi'] > 0.3)
),
'sell'] = 1
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
""" Adds several different TA indicators to the given DataFrame
"""
dataframe['ema_{}'.format(self.EMA_SHORT_TERM)] = ta.EMA(
dataframe, timeperiod=self.EMA_SHORT_TERM
)
dataframe['ema_{}'.format(self.EMA_MEDIUM_TERM)] = ta.EMA(
dataframe, timeperiod=self.EMA_MEDIUM_TERM
)
dataframe['ema_{}'.format(self.EMA_LONG_TERM)] = ta.EMA(
dataframe, timeperiod=self.EMA_LONG_TERM
)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=20, stds=2
)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['min'] = ta.MIN(dataframe, timeperiod=self.EMA_MEDIUM_TERM)
dataframe['max'] = ta.MAX(dataframe, timeperiod=self.EMA_MEDIUM_TERM)
return dataframe