How to use the fastprogress.fastprogress.progress_bar function in fastprogress

To help you get started, we’ve selected a few fastprogress examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github kaushaltrivedi / fast-bert / fast_bert / learner.py View on Github external
t_total = num_train_steps
        if self.multi_gpu == False:
            t_total = t_total // torch.distributed.get_world_size()
            
        global_step = 0
        
        pbar = master_bar(range(epochs))
        
        for epoch in pbar:
            self.model.train()
  
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            
            for step, batch in enumerate(progress_bar(self.data.train_dl, parent=pbar)):
                batch = tuple(t.to(self.device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                
                if self.is_fp16 and self.multi_label:
                    label_ids = label_ids.half()
                
                loss = self.model(input_ids, segment_ids, input_mask, label_ids)
                if self.multi_gpu:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if self.grad_accumulation_steps > 1:
                    loss = loss / self.grad_accumulation_steps
                
                if self.is_fp16:
                    self.optimizer.backward(loss)
                else:
                    loss.backward()
github dperezrada / keywords2vec / keywords2vec.py View on Github external
def parallel(func, arr, max_workers=None):
    with ProcessPoolExecutor(max_workers=max_workers) as ex:
        futures = [ex.submit(func, o, i) for i, o in enumerate(arr)]
        results = []
        for f in progress_bar(as_completed(futures), total=len(arr)):
            results.append(f.result())
        return results
github TheShadow29 / zsgnet-pytorch / code / utils.py View on Github external
def validate(self, db: Optional[DataLoader] = None,
                 mb=None) -> List[torch.tensor]:
        "Validation loop, done after every epoch"
        self.mdl.eval()
        if db is None:
            db = self.data.valid_dl

        predicted_box_dict_list = []
        with torch.no_grad():
            val_losses = {k: [] for k in self.loss_keys}
            eval_metrics = {k: [] for k in self.met_keys}
            nums = []
            for batch in progress_bar(db, parent=mb):
                for b in batch.keys():
                    batch[b] = batch[b].to(self.device)
                out = self.mdl(batch)
                out_loss = self.loss_fn(out, batch)

                metric = self.eval_fn(out, batch)
                for k in self.loss_keys:
                    val_losses[k].append(out_loss[k].detach())
                for k in self.met_keys:
                    eval_metrics[k].append(metric[k].detach())
                nums.append(batch[next(iter(batch))].shape[0])
                prediction_dict = {
                    'id': metric['idxs'].tolist(),
                    'pred_boxes': metric['pred_boxes'].tolist(),
                    'pred_scores': metric['pred_scores'].tolist()
                }
github kaushaltrivedi / fast-bert / fast_bert / data_lm.py View on Github external
def create_corpus(text_list, target_path, logger=None):

    nlp = spacy.load("en_core_web_sm", disable=["tagger", "ner", "textcat"])

    with open(target_path, "w") as f:
        #  Split sentences for each document
        logger.info("Formatting corpus for {}".format(target_path))
        for text in progress_bar(text_list):

            text = fix_html(text)
            text = replace_multi_newline(text)
            text = spec_add_spaces(text)
            text = rm_useless_spaces(text)
            text = text.strip()

            f.write(text)
github pymc-devs / pymc3 / pymc3 / smc / smc.py View on Github external
[
                    (
                        self.posterior[draw],
                        self.tempered_logp[draw],
                        self.priors[draw],
                        self.likelihoods[draw],
                        draw,
                        *parameters,
                    )
                    for draw in range(self.draws)
                ],
            )
        else:
            iterator = range(self.draws)
            if self.progressbar:
                iterator = progress_bar(iterator, display=self.progressbar)
            results = [
                metrop_kernel(
                    self.posterior[draw],
                    self.tempered_logp[draw],
                    self.priors[draw],
                    self.likelihoods[draw],
                    draw,
                    *parameters
                )
                for draw in iterator
            ]
        posterior, acc_list, priors, likelihoods = zip(*results)
        self.posterior = np.array(posterior)
        self.priors = np.array(priors)
        self.likelihoods = np.array(likelihoods)
        self.acc_per_chain = np.array(acc_list)
github pymc-devs / pymc3 / pymc3 / variational / inference.py View on Github external
def refine(self, n, progressbar=True):
        """Refine the solution using the last compiled step function
        """
        if self.state is None:
            raise TypeError("Need to call `.fit` first")
        i, step, callbacks, score = self.state
        if progressbar:
            progress = progress_bar(n, display=progressbar)
        else:
            progress = range(n)  # This is a guess at what progress_bar(n) does.
        if score:
            state = self._iterate_with_loss(i, n, step, progress, callbacks)
        else:
            state = self._iterate_without_loss(i, n, step, progress, callbacks)
        self.state = state
github pymc-devs / pymc3 / pymc3 / variational / inference.py View on Github external
def run_profiling(self, n=1000, score=None, **kwargs):
        score = self._maybe_score(score)
        fn_kwargs = kwargs.pop("fn_kwargs", dict())
        fn_kwargs["profile"] = True
        step_func = self.objective.step_function(
            score=score, fn_kwargs=fn_kwargs, **kwargs
        )
        progress = progress_bar(range(n))
        try:
            for _ in progress:
                step_func()
        except KeyboardInterrupt:
            pass
        return step_func.profile
github kaushaltrivedi / fast-bert / fast_bert / learner_lm.py View on Github external
self.logger.info("Num examples = %d", len(self.data.val_dl.dataset))
        self.logger.info("Validation Batch size = %d", self.data.val_batch_size)

        all_logits = None
        all_labels = None


        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps = 0

        preds = None
        out_label_ids = None

        validation_scores = {metric['name']: 0. for metric in self.metrics}

        for step, batch in enumerate(progress_bar(self.data.val_dl)):
            self.model.eval()
            batch = batch.to(self.device)

            with torch.no_grad():
                outputs = self.model(batch, masked_lm_labels=batch)
                tmp_eval_loss = outputs[0]
                eval_loss += tmp_eval_loss.mean().item()

                cpu_device = torch.device('cpu')
                batch.to(cpu_device)
                torch.cuda.empty_cache()

            nb_eval_steps += 1


        eval_loss = eval_loss / nb_eval_steps
github pymc-devs / pymc3 / pymc3 / sampling.py View on Github external
random_seed,
    start,
    draws=None,
    step=None,
    trace=None,
    tune=None,
    model=None,
    **kwargs
):
    skip_first = kwargs.get("skip_first", 0)

    sampling = _iter_sample(draws, step, start, trace, chain, tune, model, random_seed)
    _pbar_data = None
    _pbar_data = {"chain": chain, "divergences": 0}
    _desc = "Sampling chain {chain:d}, {divergences:,d} divergences"
    sampling = progress_bar(sampling, total=draws, display=progressbar)
    sampling.comment = _desc.format(**_pbar_data)
    try:
        strace = None
        for it, (strace, diverging) in enumerate(sampling):
            if it >= skip_first:
                trace = MultiTrace([strace])
                if diverging and _pbar_data is not None:
                    _pbar_data["divergences"] += 1
                    sampling.comment = _desc.format(**_pbar_data)
    except KeyboardInterrupt:
        pass
    return strace