Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
from fastai2.basics import *
from fastai2.vision.all import *
from fastai2.callback.all import *
from fastai2.distributed import *
from fastprogress import fastprogress
from torchvision.models import *
from fastai2.vision.models.xresnet import *
torch.backends.cudnn.benchmark = True
fastprogress.MAX_COLS = 80
def get_dbunch(size, woof, bs, workers=None):
if size<=128: path = URLs.IMAGEWOOF_160 if woof else URLs.IMAGENETTE_160
elif size<=224: path = URLs.IMAGEWOOF_320 if woof else URLs.IMAGENETTE_320
else : path = URLs.IMAGEWOOF if woof else URLs.IMAGENETTE
source = untar_data(path)
n_gpus = num_distrib() or 1
if workers is None: workers = min(8, num_cpus()//n_gpus)
dblock = DataBlock(blocks=(ImageBlock, CategoryBlock),
splitter=GrandparentSplitter(valid_name='val'),
get_items=get_image_files,
get_y=parent_label)
return dblock.databunch(source, path=source, item_tfms=[RandomResizedCrop(size, min_scale=0.35), FlipItem(0.5)], bs=bs, num_workers=workers)
from fastai.script import *
from fastai.vision import *
from fastai.callbacks import *
from fastai.distributed import *
from fastprogress import fastprogress
from torchvision.models import *
from fastai.vision.models.xresnet import *
from fastai.vision.models.presnet import *
torch.backends.cudnn.benchmark = True
fastprogress.MAX_COLS = 80
def get_data(size, woof, bs, workers=None):
if size<=128: path = URLs.IMAGEWOOF_160 if woof else URLs.IMAGENETTE_160
elif size<=192: path = URLs.IMAGEWOOF_320 if woof else URLs.IMAGENETTE_320
else : path = URLs.IMAGEWOOF if woof else URLs.IMAGENETTE
path = untar_data(path)
n_gpus = num_distrib() or 1
if workers is None: workers = min(8, num_cpus()//n_gpus)
return (ImageList.from_folder(path).split_by_folder(valid='val')
.label_from_folder().transform(([flip_lr(p=0.5)], []), size=size)
.databunch(bs=bs, num_workers=workers)
.presize(size, scale=(0.35,1))
.normalize(imagenet_stats))
from fastai.script import *
from fastai.vision import *
from fastai.callbacks import *
from fastai.distributed import *
from fastai.callbacks.tracker import *
torch.backends.cudnn.benchmark = True
import time
from fastprogress import fastprogress
from fastai.general_optimizer import *
fastprogress.MAX_COLS = 80
def get_data(size, woof, bs, workers=None, use_lighting=False):
path = Path('/mnt/fe2_disk')
if size<=128: path = path/('imagewoof-160' if woof else 'imagenette-160')
elif size<=192: path = path/('imagewoof-320' if woof else 'imagenette-320')
else : path = path/('imagewoof' if woof else 'imagenette' )
n_gpus = num_distrib() or 1
if workers is None: workers = min(8, num_cpus()//n_gpus)
tfms = [flip_lr(p=0.5)]
if use_lighting:
tfms += [brightness(change=(0.4,0.6)), contrast(scale=(0.7,1.3))]
return (ImageList.from_folder(path).split_by_folder(valid='val')
.label_from_folder().transform((tfms, []), size=size)
.databunch(bs=bs, num_workers=workers)