How to use the drizzlepac.astrodrizzle.ablot function in drizzlepac

To help you get started, we’ve selected a few drizzlepac examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github gbrammer / grizli / grizli / model.py View on Github external
wcs.pscale = np.sqrt(wcs.wcs.cd[0,0]**2 +
                                 wcs.wcs.cd[1,0]**2)*3600.
            
            #print 'IDCSCALE: %.3f' %(wcs.idcscale)
            
        #print refimage.filename(), ref_wcs.idcscale, ref_wcs.wcs.cd, flt_wcs.idcscale, ref_wcs.orientat
            
        if segmentation:
            #print '\nSEGMENTATION\n\n',(seg_ones+1).dtype, refdata.dtype, ref_wcs, flt_wcs
            ### +1 here is a hack for some memory issues
            blotted_seg = astrodrizzle.ablot.do_blot(refdata+0, ref_wcs,
                                flt_wcs, 1, coeffs=True, interp='nearest',
                                sinscl=1.0, stepsize=1, wcsmap=None)
            
            blotted_ones = astrodrizzle.ablot.do_blot(seg_ones+1, ref_wcs,
                                flt_wcs, 1, coeffs=True, interp='nearest',
                                sinscl=1.0, stepsize=1, wcsmap=None)
            
            blotted_ones[blotted_ones == 0] = 1
            ratio = np.round(blotted_seg/blotted_ones)
            grow = nd.maximum_filter(ratio, size=3, mode='constant', cval=0)
            ratio[ratio == 0] = grow[ratio == 0]
            blotted = ratio
            
        else:
            #print '\nREFDATA\n\n', refdata.dtype, ref_wcs, flt_wcs
            blotted = astrodrizzle.ablot.do_blot(refdata, ref_wcs, flt_wcs, 1, coeffs=True, interp='poly5', sinscl=1.0, stepsize=10, wcsmap=None)
        
        return blotted
github gbrammer / grizli / grizli / model.py View on Github external
if wcs.idcscale is None:
                    wcs.idcscale = np.sqrt(np.sum(wcs.wcs.cd[0,:]**2))*3600.
            else:
                wcs.idcscale = np.sqrt(np.sum(wcs.wcs.cd[0,:]**2))*3600.
            
            wcs.pscale = np.sqrt(wcs.wcs.cd[0,0]**2 +
                                 wcs.wcs.cd[1,0]**2)*3600.
            
            #print 'IDCSCALE: %.3f' %(wcs.idcscale)
            
        #print refimage.filename(), ref_wcs.idcscale, ref_wcs.wcs.cd, flt_wcs.idcscale, ref_wcs.orientat
            
        if segmentation:
            #print '\nSEGMENTATION\n\n',(seg_ones+1).dtype, refdata.dtype, ref_wcs, flt_wcs
            ### +1 here is a hack for some memory issues
            blotted_seg = astrodrizzle.ablot.do_blot(refdata+0, ref_wcs,
                                flt_wcs, 1, coeffs=True, interp='nearest',
                                sinscl=1.0, stepsize=1, wcsmap=None)
            
            blotted_ones = astrodrizzle.ablot.do_blot(seg_ones+1, ref_wcs,
                                flt_wcs, 1, coeffs=True, interp='nearest',
                                sinscl=1.0, stepsize=1, wcsmap=None)
            
            blotted_ones[blotted_ones == 0] = 1
            ratio = np.round(blotted_seg/blotted_ones)
            grow = nd.maximum_filter(ratio, size=3, mode='constant', cval=0)
            ratio[ratio == 0] = grow[ratio == 0]
            blotted = ratio
            
        else:
            #print '\nREFDATA\n\n', refdata.dtype, ref_wcs, flt_wcs
            blotted = astrodrizzle.ablot.do_blot(refdata, ref_wcs, flt_wcs, 1, coeffs=True, interp='poly5', sinscl=1.0, stepsize=10, wcsmap=None)
github gbrammer / grizli / grizli / prep.py View on Github external
ctx = pyfits.open(visit['product']+'_drc_ctx.fits')
    bits = np.log2(ctx[0].data)
    mask = ctx[0].data == 0
    single_image = np.cast[np.float32]((np.cast[int](bits) == bits) & (~mask))
    ctx_wcs = pywcs.WCS(ctx[0].header)
    ctx_wcs.pscale = utils.get_wcs_pscale(ctx_wcs)
    
    for file in visit['files']:
        flt = pyfits.open(file, mode='update')
        for ext in [1,2]:
            
            flt_wcs = pywcs.WCS(flt['SCI',ext].header, fobj=flt, relax=True)
            flt_wcs.pscale = utils.get_wcs_pscale(flt_wcs)
            
            blotted = astrodrizzle.ablot.do_blot(single_image, ctx_wcs,
                            flt_wcs, 1, coeffs=True, interp='nearest',
                            sinscl=1.0, stepsize=10, wcsmap=None)
            
            ctx_mask = blotted > 0
            
            sci = flt['SCI',ext].data
            dq = flt['DQ',ext].data

            if simple_mask:
                print('{0}: Mask image without overlaps, extension {1:d}'.format(file, ext))
                dq[ctx_mask] |= 1024
            else:
                print('{0}: Clean CRs with LACosmic, extension {1:d}'.format(file, ext))

                if with_ctx_mask:
                    inmask = blotted == 0

drizzlepac

HST image combination using the drizzle algorithm to combine astronomical images, to model image distortion, to remove cosmic rays, and generally to improve the fidelity of data in the final image.

BSD-3-Clause
Latest version published 1 month ago

Package Health Score

84 / 100
Full package analysis