Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_validation(self):
""" Validation Test """
num_var = 3
# validate an object type of the input.
with self.assertRaises(AquaError):
docplex._validate_input_model("Model")
# validate the types of the variables are binary or not
with self.assertRaises(AquaError):
mdl = Model(name='Error_integer_variables')
x = {i: mdl.integer_var(name='x_{0}'.format(i)) for i in range(num_var)}
obj_func = mdl.sum(x[i] for i in range(num_var))
mdl.maximize(obj_func)
docplex.get_qubitops(mdl)
# validate types of constraints are equality constraints or not.
with self.assertRaises(AquaError):
mdl = Model(name='Error_inequality_constraints')
x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(num_var)}
obj_func = mdl.sum(x[i] for i in range(num_var))
mdl.maximize(obj_func)
mdl.add_constraint(mdl.sum(x[i] for i in range(num_var)) <= 1)
docplex.get_qubitops(mdl)
def test_docplex_integer_constraints(self):
""" Docplex Integer Constraints test """
# Create an Ising Homiltonian with docplex
mdl = Model(name='integer_constraints')
x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(1, 5)}
max_vars_func = mdl.sum(x[i] for i in range(1, 5))
mdl.maximize(max_vars_func)
mdl.add_constraint(mdl.sum(i * x[i] for i in range(1, 5)) == 3)
qubit_op, offset = docplex.get_qubitops(mdl)
e_e = ExactEigensolver(qubit_op, k=1)
result = e_e.run()
expected_result = -2
# Compare objective
self.assertEqual(result['energy'] + offset, expected_result)
def test_docplex_constant_and_quadratic_terms_in_object_function(self):
""" Docplex Constant and Quadratic terms in Object function test """
# Create an Ising Homiltonian with docplex
laplacian = np.array([[-3., 1., 1., 1.],
[1., -2., 1., -0.],
[1., 1., -3., 1.],
[1., -0., 1., -2.]])
mdl = Model()
n = laplacian.shape[0]
bias = [0] * 4
x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)}
couplers_func = mdl.sum(
2 * laplacian[i, j] * (2 * x[i] - 1) * (2 * x[j] - 1)
for i in range(n - 1) for j in range(i, n))
bias_func = mdl.sum(float(bias[i]) * x[i] for i in range(n))
ising_func = couplers_func + bias_func
mdl.minimize(ising_func)
qubit_op, offset = docplex.get_qubitops(mdl)
e_e = ExactEigensolver(qubit_op, k=1)
result = e_e.run()
expected_result = -22
"""
If CPLEX is installed locally, we can use that to solve the problem.
Otherwise, we can use DOcplexcloud. For docloud solve, we need valid 'url' and 'key'.
Note, that if 'url' and 'key' parameters are present,
the solve will be started on DOcplexcloud even if CPLEX is available.
e.g. this forces the solve on DOcplexcloud:
model.solve(url='https://foo.com', key='bar')
Using 'docplex.mp.context.Context', it is possible to control how to solve.
"""
if model_params['write_lp']:
logger.info('Writing the lp file!')
self.model.export_as_lp('./{}.lp'.format(self.model.name))
ctx = Context()
ctx.solver.docloud.url = model_params['url']
ctx.solver.docloud.key = model_params['api_key']
agent = 'docloud' if model_params['cplex_cloud'] else 'local'
# There are several ways to set the parameters. Here are two ways:
# method 1:
if model_params['mip_gap']:
self.model.parameters.mip.tolerances.mipgap = model_params['mip_gap']
if model_params['time_limit']:
self.model.set_time_limit(model_params['time_limit'])
# # method 2:
# cplex_parameters = {'mip.tolerances.mipgap': model_params['mip_gap'],
# 'timelimit': model_params['time_limit']}
# ctx.update(cplex_parameters, create_missing_nodes=True)
avoid_names = map(lambda x: x[0],avoidp)
serversp = zip(names,max_cost_in_previous_time_window,[0]*num_types,account_limits)
server_characteristicsp = zip(names,procs,gbRAM,freestorage)
servers = filter(lambda x: x[0] not in avoid_names,serversp)
server_characteristics = filter(lambda x: x[0] not in avoid_names,server_characteristicsp)
job_parameters = []
job_parameters.append(("min_cores",min_cores,min_cores*5))
job_parameters.append(("min_ram",min_ram,min_ram*5))
job_parameters.append(("min_free_storage",min_free_storage,min_free_storage*5))
Server = namedtuple("Instance", ["name","cost","qmin","qmax"])
Job_param = namedtuple("Param", ["name","qmin","qmax"])
server = [Server(*s) for s in servers]
assert(len(server) > 0)
params = [Job_param(*j) for j in job_parameters]
server_info = {(sc[0], params[j].name): sc[1+j] for sc in server_characteristics for j in range(len(job_parameters))}
mdl = Model(name='Instance Bidding')
qty = {s: mdl.integer_var(lb=s.qmin,ub=s.qmax,name=s.name) for s in server}
for p in params:
amount = mdl.sum(qty[s] * server_info[s.name,p.name] for s in server)
mdl.add_range(p.qmin,amount,p.qmax)
mdl.add_kpi(amount, publish_name="Total %s" % p.name)
mdl.minimize(mdl.sum(qty[s] * s.cost for s in server))
mdl.print_information()
url = None
key = None
if not mdl.solve(url=url, key=key):
print("*** Problem has no solution")
else:
mdl.float_precision = 3
print("* model solved as function:")
mdl.report()
mdl.print_solution()
I_0: initial_inventory
c_t: unit production cost in month t
d_t: demand of month t
Variables:
X_t: Amount produced in month t
I_t: Inventory at the end of period t
Constraints:
Inventory Constraints: I_{t-1} + X_t - d_t = I_t
Capacity Constraints: X_t <= p
Objective: Min Sum(h*I_t + c_t*X_t)
"""
model = cpx.Model('prod_planning')
start = time()
# ================== Decision variables ==================
production_variables = model.continuous_var_dict(input_df_dict['input_data'].index, name="X")
inventory_variables = model.continuous_var_dict(input_df_dict['input_data'].index, name="I")
# Alternative way of creating the variables
# production_variables = {index: model.continuous_var(name='X_' + str(row['period']))
# for index, row in input_df_dict['input_data'].iterrows()}
#
# inventory_variables = {index: model.continuous_var(name='I_' + str(row['period']))
# for index, row in input_df_dict['input_data'].iterrows()}
logger.debug("var declaration time: {:.6f}".format(time() - start))
from docplex.mp.model import Model
import numpy as np
from itertools import combinations
from .info import fiat, trading_fee, tokens
from .utils import get_withdrawal_fees, get_crypto_prices, multiThread
import re
from copy import deepcopy
class PathOptimizer(Model):
'''
optimization model class for solving multi-lateral arbitrage path that maximizes profit.
It outputs value zero when no arbitrage opportunity is found. When an opportunity is found,
the model outputs the profit percentage as well as the arbitrage path.
Arbitrage output considers the transaction spread as well as commission rates.
Users can change parameter settings through modifying function set_params or inherit in subclass.
Example Use:
m = PathOptimizer()
m.find_arbitrage()
'''
length = None # number n, the number of currencies included.
path_length = None # the upper bound of arbitrage path length
currency_set = None # a set of length n, where n is the number of currencies included.
exchanges = None # the dict for storing clients towards each exchanges
def _validate_input_model(mdl):
"""
Check whether an input model is valid. If not, raise an AquaError
Args:
mdl (docplex.mp.model.Model): A model of DOcplex for a optimization problem.
Raises:
AquaError: Unsupported input model
"""
valid = True
# validate an object type of the input.
if not isinstance(mdl, Model):
raise AquaError('An input model must be docplex.mp.model.Model.')
# raise an error if the type of the variable is not a binary type.
for var in mdl.iter_variables():
if not var.is_binary():
logger.warning('The type of Variable %s is %s. It must be a binary variable. ',
var, var.vartype.short_name)
valid = False
# raise an error if the constraint type is not an equality constraint.
for constraint in mdl.iter_constraints():
if not constraint.sense == ComparisonType.EQ:
logger.warning('Constraint %s is not an equality constraint.', constraint)
valid = False
if not valid:
def __init__(self, input_data, input_params):
self.input_data = input_data
self.input_params = input_params
self.model = cpx.Model('prod_planning')
self._create_decision_variables()
self._create_main_constraints()
self._set_objective_function()
mdl.minimize(mdl.sum(qty[s] * s.cost for s in server))
mdl.print_information()
url = None
key = None
if not mdl.solve(url=url, key=key):
print("*** Problem has no solution")
else:
mdl.float_precision = 3
print("* model solved as function:")
mdl.report()
mdl.print_solution()
mdl.report_kpis()
mdl.export_as_lp("cplex.lp")
os.system("cat cplex.lp")
# Save the CPLEX solution as "solution.json" program output
with get_environment().get_output_stream("instances.json") as fp:
mdl.solution.export(fp, "json")
return