How to use deepdish - 10 common examples

To help you get started, we’ve selected a few deepdish examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
elif hasattr(level._v_attrs, 'strtype'):
            strtype = level._v_attrs.strtype
            itemsize = level._v_attrs.itemsize
            if strtype == b'unicode':
                shape = level.shape[:-1] + (level.shape[-1] // itemsize // 4,)
            elif strtype == b'ascii':
                shape = level.shape

            node = NumpyArrayNode(shape, strtype.decode('ascii'))

        return node
    elif isinstance(level, tables.link.SoftLink):
        node = SoftLinkNode(level.target)
        return node
    else:
        return Node()
github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
return ObjectNode()
        node = NumpyArrayNode(level.shape, 'unknown')
        return node
    elif isinstance(level, tables.Array):
        stats = {}
        if settings.get('summarize'):
            stats['mean'] = level[:].mean()
            stats['std'] = level[:].std()

        compression = {}
        if settings.get('compression'):
            compression['complib'] = level.filters.complib
            compression['shuffle'] = level.filters.shuffle
            compression['complevel'] = level.filters.complevel

        node = NumpyArrayNode(level.shape, _format_dtype(level.dtype),
                              statistics=stats, compression=compression)

        if hasattr(level._v_attrs, 'zeroarray_dtype'):
            dtype = level._v_attrs.zeroarray_dtype
            node = NumpyArrayNode(tuple(level), _format_dtype(dtype))

        elif hasattr(level._v_attrs, 'strtype'):
            strtype = level._v_attrs.strtype
            itemsize = level._v_attrs.itemsize
            if strtype == b'unicode':
                shape = level.shape[:-1] + (level.shape[-1] // itemsize // 4,)
            elif strtype == b'ascii':
                shape = level.shape

            node = NumpyArrayNode(shape, strtype.decode('ascii'))
github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
if settings.get('summarize'):
            stats['mean'] = level[:].mean()
            stats['std'] = level[:].std()

        compression = {}
        if settings.get('compression'):
            compression['complib'] = level.filters.complib
            compression['shuffle'] = level.filters.shuffle
            compression['complevel'] = level.filters.complevel

        node = NumpyArrayNode(level.shape, _format_dtype(level.dtype),
                              statistics=stats, compression=compression)

        if hasattr(level._v_attrs, 'zeroarray_dtype'):
            dtype = level._v_attrs.zeroarray_dtype
            node = NumpyArrayNode(tuple(level), _format_dtype(dtype))

        elif hasattr(level._v_attrs, 'strtype'):
            strtype = level._v_attrs.strtype
            itemsize = level._v_attrs.itemsize
            if strtype == b'unicode':
                shape = level.shape[:-1] + (level.shape[-1] // itemsize // 4,)
            elif strtype == b'ascii':
                shape = level.shape

            node = NumpyArrayNode(shape, strtype.decode('ascii'))

        return node
    elif isinstance(level, tables.link.SoftLink):
        node = SoftLinkNode(level.target)
        return node
    else:
github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
node = NumpyArrayNode(level.shape, _format_dtype(level.dtype),
                              statistics=stats, compression=compression)

        if hasattr(level._v_attrs, 'zeroarray_dtype'):
            dtype = level._v_attrs.zeroarray_dtype
            node = NumpyArrayNode(tuple(level), _format_dtype(dtype))

        elif hasattr(level._v_attrs, 'strtype'):
            strtype = level._v_attrs.strtype
            itemsize = level._v_attrs.itemsize
            if strtype == b'unicode':
                shape = level.shape[:-1] + (level.shape[-1] // itemsize // 4,)
            elif strtype == b'ascii':
                shape = level.shape

            node = NumpyArrayNode(shape, strtype.decode('ascii'))

        return node
    elif isinstance(level, tables.link.SoftLink):
        node = SoftLinkNode(level.target)
        return node
    else:
        return Node()
github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
dtype = level._v_attrs.zeroarray_dtype
            node = NumpyArrayNode(tuple(level), _format_dtype(dtype))

        elif hasattr(level._v_attrs, 'strtype'):
            strtype = level._v_attrs.strtype
            itemsize = level._v_attrs.itemsize
            if strtype == b'unicode':
                shape = level.shape[:-1] + (level.shape[-1] // itemsize // 4,)
            elif strtype == b'ascii':
                shape = level.shape

            node = NumpyArrayNode(shape, strtype.decode('ascii'))

        return node
    elif isinstance(level, tables.link.SoftLink):
        node = SoftLinkNode(level.target)
        return node
    else:
        return Node()
github uchicago-cs / deepdish / deepdish / tools / caffe / tester.py View on Github external
if args.seed is None:
        pattern = re.compile(r'_s(\d+)_')
        m = pattern.search(os.path.basename(args.caffemodel))
        if m:
            seed = int(m.group(1))
        else:
            raise ValueError('Could not automatically determine seed')
    else:
        seed = args.seed
    print('Seed:', seed)

    scores = net.forward_all(data=x).values()[0].squeeze((2, 3))
    yhat = scores.argmax(-1)
    if args.output:
        dd.io.save(args.output, dict(scores=scores, labels=y, name=name, seed=seed))

    success = (yhat == y).mean()
    error = 1 - success

    print('Success: {:.2f}% / Error: {:.2f}%'.format(success * 100, error * 100))
github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
welcome = "Loaded {} into '{}':".format(
            path_desc,
            paint('data', 'blue', colorize=colorize))

        # Import deepdish for the session
        import deepdish as dd
        import IPython
        IPython.embed(header=welcome)

    i = 0
    if args.inspect is not None:
        fn = single_file(args.file)

        try:
            data = io.load(fn, args.inspect)
        except ValueError:
            s = 'Error: Could not find group: {}'.format(args.inspect)
            print(paint(s, 'red', colorize=colorize))
            sys.exit(1)
        if args.ipython:
            run_ipython(fn, group=args.inspect, data=data)
        else:
            print(data)
    elif args.ipython:
        fn = single_file(args.file)
        data = io.load(fn)
        run_ipython(fn, data=data)
    else:
        for f in args.file:
            # State that will be incremented
            settings['filtered_count'] = 0
github uchicago-cs / deepdish / deepdish / io / ls.py View on Github external
if args.inspect is not None:
        fn = single_file(args.file)

        try:
            data = io.load(fn, args.inspect)
        except ValueError:
            s = 'Error: Could not find group: {}'.format(args.inspect)
            print(paint(s, 'red', colorize=colorize))
            sys.exit(1)
        if args.ipython:
            run_ipython(fn, group=args.inspect, data=data)
        else:
            print(data)
    elif args.ipython:
        fn = single_file(args.file)
        data = io.load(fn)
        run_ipython(fn, data=data)
    else:
        for f in args.file:
            # State that will be incremented
            settings['filtered_count'] = 0

            if args.column_width is None:
                settings['left-column-width'] = max(MIN_AUTOMATIC_COLUMN_WIDTH, min(MAX_AUTOMATIC_COLUMN_WIDTH, _discover_column_width(f)))
            else:
                settings['left-column-width'] = args.column_width

            s = get_tree(f, raw=args.raw, settings=settings)
            if s is not None:
                if i > 0:
                    print()
github uchicago-cs / deepdish / deepdish / experiments / cnn_boosting / logitboost_caffe.py View on Github external
all_fmj = net.forward_all(data=X).values()[0].squeeze(axis=(2,3))
            all_te_fmj = net.forward_all(data=te_X).values()[0].squeeze(axis=(2,3))

            all_fmj *= zstd
            all_te_fmj *= zstd
            info = {}

            if 0:
                # Just load a pre-calculated version instead
                model_fn = base + '.caffemodel'
                net = caffe.Classifier(bare_conf_fn, model_fn, image_dims=(32, 32))
                net.set_phase_test()
                net.set_mode_gpu()
                net.set_device(DEVICE_ID)

                all_fmj = dd.io.load('all_fmj0_eps_inf.h5')
                all_te_fmj = dd.io.load('all_te_fmj0_eps_inf.h5')
        else:
            #warmstart_fn = base + '.solverstate'
            #warmstart_fn = 'models/regression100_6916_loop0_iter_70000.solverstate'
            #warmstart_fn = 'models/adaboost100_35934_loop0_iter_70000.solverstate'
            warmstart_fn = None
            net, info = train_model(name, solver_conf_fn, conf_fn, bare_conf_fn, steps, seed=g_seed, logfile=logfile, device_id=DEVICE_ID, warmstart=warmstart_fn)

            all_fmj = net.forward_all(data=X).values()[0].squeeze(axis=(2,3))
            all_te_fmj = net.forward_all(data=te_X).values()[0].squeeze(axis=(2,3))

            all_fmj *= zstd
            all_te_fmj *= zstd

        g_seed += 1
github baccuslab / deep-retina / deepretina / core.py View on Github external
# store results in this directory
    name = '_'.join([mdl.name, cellname, expt, stim, datetime.now().strftime('%Y.%m.%d-%H.%M')])
    base = f'../results/{name}'
    os.makedirs(base, exist_ok=True)

    # define model callbacks
    cbs = [cb.ModelCheckpoint(os.path.join(base, 'weights-{epoch:03d}-{val_loss:.3f}.h5')),
           cb.TensorBoard(log_dir=base, histogram_freq=1, batch_size=5000, write_grads=True),
           cb.ReduceLROnPlateau(min_lr=0, factor=0.2, patience=10),
           cb.CSVLogger(os.path.join(base, 'training.csv')),
           cb.EarlyStopping(monitor='val_loss', patience=20)]

    # train
    history = mdl.fit(x=data.X, y=data.y, batch_size=bz, epochs=nb_epochs,
                      callbacks=cbs, validation_split=val_split, shuffle=True)
    dd.io.save(os.path.join(base, 'history.h5'), history.history)

    return history