Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
welcome = "Loaded {} into '{}':".format(
path_desc,
paint('data', 'blue', colorize=colorize))
# Import deepdish for the session
import deepdish as dd
import IPython
IPython.embed(header=welcome)
i = 0
if args.inspect is not None:
fn = single_file(args.file)
try:
data = io.load(fn, args.inspect)
except ValueError:
s = 'Error: Could not find group: {}'.format(args.inspect)
print(paint(s, 'red', colorize=colorize))
sys.exit(1)
if args.ipython:
run_ipython(fn, group=args.inspect, data=data)
else:
print(data)
elif args.ipython:
fn = single_file(args.file)
data = io.load(fn)
run_ipython(fn, data=data)
else:
for f in args.file:
# State that will be incremented
settings['filtered_count'] = 0
if args.inspect is not None:
fn = single_file(args.file)
try:
data = io.load(fn, args.inspect)
except ValueError:
s = 'Error: Could not find group: {}'.format(args.inspect)
print(paint(s, 'red', colorize=colorize))
sys.exit(1)
if args.ipython:
run_ipython(fn, group=args.inspect, data=data)
else:
print(data)
elif args.ipython:
fn = single_file(args.file)
data = io.load(fn)
run_ipython(fn, data=data)
else:
for f in args.file:
# State that will be incremented
settings['filtered_count'] = 0
if args.column_width is None:
settings['left-column-width'] = max(MIN_AUTOMATIC_COLUMN_WIDTH, min(MAX_AUTOMATIC_COLUMN_WIDTH, _discover_column_width(f)))
else:
settings['left-column-width'] = args.column_width
s = get_tree(f, raw=args.raw, settings=settings)
if s is not None:
if i > 0:
print()
except:
break
y.append(np.mean(rs))
ystd.append(np.std(rs))
plt.errorbar(np.arange(len(y)), y, yerr=ystd, label='{}'.format(name))
plt.xticks(np.arange(len(y)), layers)
plt.ylabel('<- Redundancy / Identity-like ->')
plt.legend(loc=4)
plt.ylim((0, 1))
plt.savefig(vz.impath('svg'))
plt.close()
plt.figure()
for fn in args.responses:
data = dd.io.load(fn)
name = data['name']
if layers is None:
layers = data['layers']
y = []
ystd = []
for l in layers:
rs = []
#for X in data['responses'][l]:
X = data['responses'][l]
y.append(X.mean())
plt.plot(np.arange(len(y)), y, label='{}'.format(name))
plt.xticks(np.arange(len(y)), layers)
plt.ylabel('Mean')
plt.legend(loc=4)
plt.savefig(vz.impath('svg'))
align : str or dict
If str, either 'hyper' or 'SRM'. If 'hyper', alignment algorithm will be
hyperalignment. If 'SRM', alignment algorithm will be shared response
model. You can also pass a dictionary for finer control, where the 'model'
key is a string that specifies the model and the params key is a dictionary
of parameter values (default : 'hyper').
Returns
----------
data : Numpy Array
Example data
"""
if dataset[-4:] == '.geo':
geo = dd.io.load(dataset)
if 'dtype' in geo:
if 'list' in geo['dtype']:
geo['data'] = list(geo['data'])
elif 'df' in geo['dtype']:
geo['data'] = pd.DataFrame(geo['data'])
geo['xform_data'] = list(geo['xform_data'])
data = DataGeometry(**geo)
elif dataset in datadict.keys():
data = _load_data(dataset, datadict[dataset])
else:
raise RuntimeError('No data loaded. Please specify a .geo file or '
'one of the following sample files: weights, '
'weights_avg, weights_sample, spiral, mushrooms, '
'wiki, nips or sotus.')
if data is not None:
def load(cls, path):
if path is None:
return cls.load_from_dict({})
else:
d = io.load(path)
# Check class type
class_name = d.get('name')
if class_name is not None:
return cls.getclass(class_name).load_from_dict(d)
else:
return cls.load_from_dict(d)
def build_network(raw_x, y, model_filename=None, network_type='alex-lrn'):
outputs = []
activations = {}
phase_test = tf.placeholder(tf.bool, name='phase_test')
info = selfsup.info.create(scale_summary=True)
x = raw_x - 114.451/255
# Scale and subtract mean
if model_filename is not None:
data = dd.io.load(model_filename, '/data')
else:
data = {}
if network_type in ['alex', 'alex-lrn']:
use_lrn = network_type == 'alex-lrn'
print('USE_LRN', use_lrn)
z = selfsup.model.alex.build_network(x, info=info, parameters=data,
final_layer=False,
phase_test=phase_test,
pre_adjust_batch_norm=True,
use_lrn=use_lrn,
use_dropout=True,
well_behaved_size=False)
elif network_type == 'vgg16':
z = selfsup.model.vgg16.build_network(x, info=info, parameters=data,
final_layer=False,
'''
# Import is performed here so that deepdish is not required for all of
# the "datasets" functions.
import deepdish
dpath = os.path.join(config.get_data_directory(), dir_name)
if not os.path.exists(dpath):
os.makedirs(dpath)
# Downloads the file if it doesn't exist already.
fpath = os.path.join(dpath, 'reaching_dataset.h5')
if not os.path.exists(fpath):
url = 'http://goo.gl/eXeUz8'
_urlretrieve(url, fpath)
data = deepdish.io.load(fpath)
return data
caption = loss_fn
caption = '{} ({:.3f})'.format(caption, losses[-1])
plt.errorbar(iter, losses, yerr=losses_std, label=caption)
plt.legend()
plt.ylabel('Loss')
plt.xlabel('Iteration')
vz.savefig()
plt.close()
plt.figure()
for i, loss_fn in enumerate(args.losses):
print('file', loss_fn)
data = dd.io.load(loss_fn)
iter = data['iterations'][0]
rates = 100*(1-data['rates'].mean(0))
rates_std = 100*data['rates'].std(0)
if args.captions:
caption = args.captions[i]
else:
caption = loss_fn
caption = '{} ({:.2f}%)'.format(caption, rates[-1])
plt.errorbar(iter, rates, yerr=rates_std, label=caption)
plt.legend()
plt.ylabel('Error rate (%)')
plt.xlabel('Iteration')
def load_mean_param(self):
mean = np.zeros((1, self.total_params))
# Initialize scale at 0.9
mean[0, 0] = 0.9
mean_path = join(
dirname(self.smpl_model_path), 'neutral_smpl_mean_params.h5')
mean_vals = dd.io.load(mean_path)
mean_pose = mean_vals['pose']
# Ignore the global rotation.
mean_pose[:3] = 0.
mean_shape = mean_vals['shape']
# This initializes the global pose to be up-right when projected
mean_pose[0] = np.pi
mean[0, 3:] = np.hstack((mean_pose, mean_shape))
mean = tf.constant(mean, tf.float32)
self.mean_var = tf.Variable(
mean, name="mean_param", dtype=tf.float32, trainable=True)
self.E_var.append(self.mean_var)
init_mean = tf.tile(self.mean_var, [self.batch_size, 1])
return init_mean