How to use the datashader.transfer_functions.dynspread function in datashader

To help you get started, we’ve selected a few datashader examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pyviz-dev / nbsite / examples / sites / holoviews / holoviews / operation / datashader.py View on Github external
def _apply_dynspread(self, array):
        img = tf.Image(array)
        return tf.dynspread(img, max_px=self.p.max_px,
                            threshold=self.p.threshold,
                            how=self.p.how, shape=self.p.shape).data
github holoviz / datashader / datashader / pipeline.py View on Github external
def __init__(self, df, glyph, agg=reductions.count(),
                 transform_fn=identity, color_fn=tf.shade, spread_fn=tf.dynspread,
                 width_scale=1.0, height_scale=1.0):
        self.df = df
        self.glyph = glyph
        self.agg = agg
        self.transform_fn = transform_fn
        self.color_fn = color_fn
        self.spread_fn = spread_fn
        self.width_scale = width_scale
        self.height_scale = height_scale
github rapidsai / cuxfilter / python / cuxfilter / charts / datashader / plots.py View on Github external
def viewInteractiveImage(x_range, y_range, w, h, data_source):
            cvs = cds.Canvas(
                plot_width=w, plot_height=h, x_range=x_range, y_range=y_range
            )
            agg = cvs.points(
                data_source,
                self.x,
                self.y,
                getattr(cds, self.aggregate_fn)(self.aggregate_col),
            )
            img = tf.shade(
                agg, cmap=self.color_palette, how=self.pixel_shade_type
            )
            if self.pixel_spread == "dynspread":
                return tf.dynspread(
                    img,
                    threshold=self.pixel_density,
                    max_px=self.point_size,
                    shape=self.point_shape,
                )
            else:
                return tf.spread(
                    img, px=self.point_size, shape=self.point_shape
                )
github lmcinnes / umap / umap / plot.py View on Github external
elif edge_bundling == 'hammer':
        warn('Hammer edge bundling is expensive for large graphs!\n'
             'This may take a long time to compute!')
        edges = bd.hammer_bundle(point_df, edge_df, weight='weight')
    else:
        raise ValueError('{} is not a recognised bundling method'.format(edge_bundling))

    edge_img = tf.shade(canvas.line(edges, 'x', 'y', agg=ds.sum('weight')),
                        cmap=plt.get_cmap(edge_cmap), how=edge_how)
    edge_img = tf.set_background(edge_img, background)

    if show_points:
        point_img = _datashade_points(points, None, labels, values, cmap, color_key,
                                      color_key_cmap, None, width, height)
        if px_size > 1:
            point_img = tf.dynspread(point_img, threshold=0.5, max_px=px_size)
        result = tf.stack(edge_img, point_img, how="over")
    else:
        result = edge_img

    font_color = _select_font_color(background)

    dpi = plt.rcParams['figure.dpi']
    fig = plt.figure(figsize=(width / dpi, height / dpi))
    ax = fig.add_subplot(111)

    _embed_datashader_in_an_axis(result, ax)

    ax.set(xticks=[], yticks=[])
    ax.text(0.99,
            0.01,
            'UMAP: n_neighbors={}, min_dist={}'.format(umap_object.n_neighbors,
github holoviz / holoviews / holoviews / operation / datashader.py View on Github external
def _apply_spreading(self, array):
        img = tf.Image(array)
        return tf.dynspread(img, max_px=self.p.max_px,
                            threshold=self.p.threshold,
                            how=self.p.how, shape=self.p.shape).data