Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
color_key = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256)))
result = tf.shade(aggregation, color_key=color_key, how='eq_hist')
else:
data['val_cat'] = pd.Categorical(values)
aggregation = canvas.points(data, 'x', 'y', agg=ds.count_cat('val_cat'))
color_key_cols = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, unique_values.shape[0])))
color_key = dict(zip(unique_values, color_key_cols))
result = tf.shade(aggregation, color_key=color_key, how='eq_hist')
# Color by density (default datashader option)
else:
aggregation = canvas.points(data, 'x', 'y', agg=ds.count())
result = tf.shade(aggregation, cmap=plt.get_cmap(cmap))
if background is not None:
result = tf.set_background(result, background)
if ax is not None:
_embed_datashader_in_an_axis(result, ax)
return ax
else:
return result
return
plot_width = int(math.ceil(dims_data['width'][0]))
plot_height = int(math.ceil(dims_data['height'][0]))
x_range = (dims_data['xmin'][0], dims_data['xmax'][0])
y_range = (dims_data['ymin'][0], dims_data['ymax'][0])
canvas = ds.Canvas(plot_width=plot_width,
plot_height=plot_height,
x_range=x_range,
y_range=y_range)
agg = canvas.points(dataframe, 'dropoff_x', 'dropoff_y',
ds.count('trip_distance'))
img = tf.shade(agg, cmap=BuGn9, how='log')
new_data = {}
new_data['image'] = [img.data]
new_data['x'] = [x_range[0]]
new_data['y'] = [y_range[0]]
new_data['dh'] = [y_range[1] - y_range[0]]
new_data['dw'] = [x_range[1] - x_range[0]]
image_source.stream(new_data, 1)
def _apply_spreading(self, array):
img = tf.Image(array)
return tf.spread(img, px=self.p.px,
how=self.p.how, shape=self.p.shape).data
'each sample (size mismatch: {} {})'.format(values.shape[0],
points.shape[0]))
unique_values = np.unique(values)
if unique_values.shape[0] >= 256:
min_val, max_val = np.min(values), np.max(values)
bin_size = (max_val - min_val) / 256.0
data['val_cat'] = pd.Categorical(np.round((values - min_val) / bin_size).astype(np.int16))
aggregation = canvas.points(data, 'x', 'y', agg=ds.count_cat('val_cat'))
color_key = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, 256)))
result = tf.shade(aggregation, color_key=color_key, how='eq_hist')
else:
data['val_cat'] = pd.Categorical(values)
aggregation = canvas.points(data, 'x', 'y', agg=ds.count_cat('val_cat'))
color_key_cols = _to_hex(plt.get_cmap(cmap)(np.linspace(0, 1, unique_values.shape[0])))
color_key = dict(zip(unique_values, color_key_cols))
result = tf.shade(aggregation, color_key=color_key, how='eq_hist')
# Color by density (default datashader option)
else:
aggregation = canvas.points(data, 'x', 'y', agg=ds.count())
result = tf.shade(aggregation, cmap=plt.get_cmap(cmap))
if background is not None:
result = tf.set_background(result, background)
if ax is not None:
_embed_datashader_in_an_axis(result, ax)
return ax
else:
return result