How to use the dataset.listDataset function in dataset

To help you get started, we’ve selected a few dataset examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github andy-yun / pytorch-0.4-yolov3 / eval.py View on Github external
if use_cuda:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpus
        torch.cuda.manual_seed(seed)

    global model
    model = Darknet(cfgfile)
    #model.print_network()

    init_width   = model.width
    init_height  = model.height

    kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
    
    global test_loader
    test_loader = torch.utils.data.DataLoader(
        dataset.listDataset(testlist, shape=(init_width, init_height),
                    shuffle=False,
                    transform=transforms.Compose([
                        transforms.ToTensor(),
                    ]), train=False),
        batch_size=batch_size, shuffle=False, **kwargs)

    if use_cuda:
        if ngpus > 1:
            model = torch.nn.DataParallel(model)
            model = model.module
    model = model.to(torch.device("cuda" if use_cuda else "cpu"))
    for w in FLAGS.weights:
        model.load_weights(w)
        logging('evaluating ... %s' % (w))
        test()
github sony / nnabla-examples / object-detection / yolov2 / valid.py View on Github external
def create_losses(batchsize, imheight, imwidth, test=True):
        import gc
        gc.collect()
        nnabla_ext.cuda.clear_memory_cache()

        anchors = args.num_anchors
        classes = args.num_classes
        yolo_x = nnabla.Variable((batchsize, 3, imheight, imwidth))
        yolo_features = yolov2.yolov2(yolo_x, anchors, classes, test=test)
        return yolo_x, yolo_features

    yolo_x_nnabla, yolo_features_nnabla = create_losses(
        args.valid_batchsize, args.height, args.width, test=True)
    nnabla.load_parameters(weightfile)

    valid_dataset = dataset.listDataset(valid_images, args,
                                        train=False,
                                        shape=(args.width, args.height), shuffle=False)
    assert(args.valid_batchsize > 1)

    def batch_iter(it, batch_size):
        def list2np(t):
            imgs, labels = zip(*t)
            retimgs = np.zeros((len(imgs),) + imgs[0].shape, dtype=np.float32)
            retlabels = np.zeros(
                (len(labels),) + labels[0].shape, dtype=np.float32)
            for i, img in enumerate(imgs):
                retimgs[i, :, :, :] = img
            for i, label in enumerate(labels):
                retlabels[i, :] = label
            return retimgs, retlabels
        retlist = []
github sonack / CNN-based-Image-Compression-Guided-by-YOLOv2 / yolov2 / train.py View on Github external
def train(epoch):
    global processed_batches
    t0 = time.time()
    if ngpus > 1:
        cur_model = model.module
    else:
        cur_model = model
    train_loader = torch.utils.data.DataLoader(
        dataset.listDataset(trainlist, shape=(init_width, init_height),
                       shuffle=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                       ]), 
                       train=True, 
                       seen=cur_model.seen,
                       batch_size=batch_size,
                       num_workers=num_workers),
        batch_size=batch_size, shuffle=False, **kwargs)

    lr = adjust_learning_rate(optimizer, processed_batches)
    logging('epoch %d, processed %d samples, lr %f' % (epoch, epoch * len(train_loader.dataset), lr))
    model.train()
    t1 = time.time()
    avg_time = torch.zeros(9)
    for batch_idx, (data, target) in enumerate(train_loader):
github microsoft / singleshotpose / valid.py View on Github external
tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]
    
    # Specicy model, load pretrained weights, pass to GPU and set the module in evaluation mode
    model = Darknet(modelcfg)
    model.print_network()
    model.load_weights(weightfile)
    model.cuda()
    model.eval()
    test_width    = model.test_width
    test_height   = model.test_height
    num_keypoints = model.num_keypoints 
    num_labels    = num_keypoints * 2 + 3 # +2 for width, height,  +1 for class label

    # Get the parser for the test dataset
    valid_dataset = dataset.listDataset(valid_images, 
                                        shape=(test_width, test_height),
                                        shuffle=False,
                                        transform=transforms.Compose([transforms.ToTensor(),]))

    # Specify the number of workers for multiple processing, get the dataloader for the test dataset
    kwargs = {'num_workers': 4, 'pin_memory': True}
    test_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, shuffle=False, **kwargs) 

    logging("   Testing {}...".format(name))
    logging("   Number of test samples: %d" % len(test_loader.dataset))
    # Iterate through test batches (Batch size for test data is 1)
    count = 0
    for batch_idx, (data, target) in enumerate(test_loader):
        t1 = time.time()
        # Pass data to GPU
        data = data.cuda()
github sony / nnabla-examples / object-detection / yolov2 / train.py View on Github external
def train(args, epoch, max_epochs, train_graph, yolo_solver,
          prefetch_iterator, on_memory_data):

    sample_iter = dataset.listDataset(
        args.train, args,
        shuffle=True,
        train=True,
        seen=train_graph.seen,
        image_sizes=args.size_aug,
        image_size_change_freq=args.batch_size * args.accum_times * 10,
        on_memory_data=on_memory_data,
        use_cv2=not args.disable_cv2)
    batch_iter = dataset.create_batch_iter(
        iter(sample_iter), batch_size=args.batch_size)

    total_loss = []
    epoch_seen = 0
    tic = time.time()
    for batch_idx, ((data_tensor, target_tensor), preprocess_time) \
            in enumerate(prefetch_iterator.create(batch_iter)):