How to use the dataset.Dataset function in dataset

To help you get started, we’ve selected a few dataset examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Maximellerbach / AutonomousCar / create_model / convolution / pred_function.py View on Github external
def after_training_test_pred(self, dos='C:\\Users\\maxim\\random_data\\4 trackmania A04\\', size=(160,120), nimg_size=(5,5), sleeptime=1):
    Dataset = dataset.Dataset([dataset.direction_component, dataset.speed_component, dataset.time_component])
    for i in Dataset.load_dos(dos):
        img = cv2.imread(i)
        if self.load_speed:
            speed = Dataset.load_component_item(i, 1)
            pred_img(self, img, size, sleeptime, speed=speed, nimg_size=nimg_size)
github jhu-lcsr / costar_plan / costar_task_plan / python / costar_task_plan / datasets / tom.py View on Github external
from tf_conversions import posemath as pm
from geometry_msgs.msg import Pose, Quaternion

LOGGER = logging.getLogger(__name__)

try:
  import rospy, rosbag
except ImportError, e:
  LOGGER.warning("Could not load rospy/rosbag for TOM dataset." \
                 "Original error: %s" % str(e))

'''
Load a set of ROS bags
'''
class TomDataset(Dataset):

  right_arm_end_frame_topic = "/tom/arm_right/Xef_w"
  gripper_topic = "/tom/arm_right/hand/gripperState"
  arm_data_topic = "/tom/arm_right/RobotData"
  vision_topic = "/tom/head/vision/manager/visual_info"
  skin_topic = "/tom/arm_right/hand/semanticGripperCells"

  FOLDER = 0
  GOOD = 1

  # set up the folders to read from
  folders = [
              ("Ilya_Box", True),
              ("Ilya_Trash", False),
              ("Karinne_Box", True),
              ("Karinne_Trash", False),
github analysiscenter / batchflow / examples / tutorial / 01_basic.py View on Github external
def gen_data(num_items):
    index = np.arange(num_items)
    dataset = Dataset(index=index, batch_class=ArrayBatch)
    return dataset
github rwightman / pytorch-nips2017-adversarial / python / run_cw_inspired.py View on Github external
if args.no_augmentation:
        augmentation = lambda x: x
    else:
        augmentation = processing.build_anp_augmentation_module(
            saturation=args.saturation,
            brightness_contrast=args.brightness_contrast,
            gaus_blur_prob=args.gaus_blur_prob,
            gaus_blur_size=args.gaus_blur_size,
            gaus_blur_sigma=args.gaus_blur_sigma
        ).cuda()

    if args.targeted:
        dataset = Dataset(args.input_dir)
    else:
        dataset = Dataset(args.input_dir, target_file='')

    attack = CWInspired(
        target_model,
        augmentation,
        max_epsilon=args.max_epsilon,
        n_iter=args.n_iter,
        lr=args.lr,
        targeted=args.targeted,
        target_nth_highest=args.target_nth_highest,
        prob_dont_augment=0.0,
        always_target=args.always_target,
        random_start=args.random_start,
        n_restarts = args.n_restarts
    )

    runner = ImageSaveAttackRunner(dataset, args.output_dir, time_limit_per_100=args.time_limit_per_100)
github naykun / TF_PG_GANS / Tensorflow-progressive_growing_of_gans / train_debug.py View on Github external
def load_dataset(dataset_spec=None, verbose=True, **spec_overrides):
    if verbose: print('Loading dataset...')
    if dataset_spec is None: dataset_spec = config.dataset
    dataset_spec = dict(dataset_spec) # take a copy of the dict before modifying it
    dataset_spec.update(spec_overrides)
    dataset_spec['h5_path'] = os.path.join(config.data_dir, dataset_spec['h5_path'])
    if 'label_path' in dataset_spec: dataset_spec['label_path'] = os.path.join(config.data_dir, dataset_spec['label_path'])
    training_set = dataset.Dataset(**dataset_spec)
    #

    #print("****************************************")
    #print("原有shape:",training_set.shape)
    #测试,直接交换两个维度,看效果
    #training_set=np.swapaxes(training_set,1,2)
    #training_set=np.swapaxes(training_set,2,3)
    #print("变换后shape:",training_set.shape)
    
    #
    if verbose: print('Dataset shape =', np.int32(training_set.shape).tolist())
    drange_orig = training_set.get_dynamic_range()
    if verbose: print('Dynamic range =', drange_orig)
    return training_set, drange_orig
github chenghuige / wenzheng / projects / ai2018 / sentiment / train.py View on Github external
model = getattr(base, FLAGS.model)(embedding)

  logging.info(model)

  train = melt.apps.get_train()

  init_fn = None
  # TODO FIXME should like below but now has problem 
  #     File "/home/gezi/mine/wenzheng/utils/melt/util.py", line 38, in create_restore_fn
  #     assert variables_to_restore, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
  # AssertionError: [, , , , , , , , , , , ]

  # if FLAGS.lm_path:
  #   init_fn = melt.create_restore_fn(FLAGS.lm_path, FLAGS.model, 'TextEncoder')

  train(Dataset,
        model,  
        criterion,
        eval_fn=ev.evaluate,
        init_fn=init_fn, 
        valid_write_fn=ev.valid_write,
        infer_write_fn=ev.infer_write,
        valid_suffix='.valid.csv',
        infer_suffix='.infer.csv')
github linjieyangsc / video_seg / osvos_demo.py View on Github external
parent_path = os.path.join('models_src', 'OSVOS_parent', 'OSVOS_parent.ckpt-50000')
        logs_path = os.path.join('models_src', seq_name, label_id)
        if train_model:
            max_training_iters = int(sys.argv[2])

        # Define Dataset
        test_frames = sorted(os.listdir(os.path.join(baseDir, 'DAVIS', 'JPEGImages', '480p', seq_name)))
        test_imgs = [os.path.join(baseDir, 'DAVIS', 'JPEGImages', '480p', seq_name, frame) for frame in test_frames]
        if train_model:
            train_imgs = [os.path.join(baseDir, 'DAVIS', 'JPEGImages', '480p', seq_name, '00000.jpg')+' '+
                          os.path.join(baseDir, 'DAVIS', 'Annotations', '480p_split', seq_name, label_id, '00000.png')]
            print train_imgs
            print label_id
            dataset = Dataset(train_imgs, test_imgs, './', data_aug=True, data_aug_scales=[0.5, 0.8, 1])
        else:
            dataset = Dataset(None, test_imgs, './')
        # Train the network
        if train_model:
            # More training parameters
            learning_rate = 1e-3
            save_step = max_training_iters
            side_supervision = 3
            display_step = 10
            with tf.Graph().as_default():
                with tf.device('/gpu:' + str(gpu_id)):
                    global_step = tf.Variable(0, name='global_step', trainable=False)
                    osvos.train_finetune(dataset, parent_path, side_supervision, learning_rate, logs_path, max_training_iters,
                                         save_step, display_step, global_step, iter_mean_grad=1, instance_norm=True, ckpt_name=seq_name)

        # Test the network
        with tf.Graph().as_default():
            with tf.device('/gpu:' + str(gpu_id)):
github zsy23 / chinese_nlp / machine_reading_comprehension / mrc2018 / run.py View on Github external
def prepare(args):
    """
    checks data, creates the directories, prepare the vocabulary and embeddings
    """
    logger = logging.getLogger("brc")
    logger.info('Checking the data files...')
    for data_path in args.train_files + args.dev_files + args.test_files:
        assert os.path.exists(data_path), '{} file does not exist.'.format(data_path)
    logger.info('Preparing the directories...')
    for dir_path in [args.vocab_dir, args.model_dir, args.result_dir, args.summary_dir]:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

    logger.info('Building vocabulary...')
    brc_data = Dataset(args.max_p_num, args.max_p_len, args.max_q_len, args.max_w_len,
                          args.train_files, args.dev_files, args.test_files)
    vocab = Vocab(lower=True)
    for word in brc_data.word_iter('train'):
        vocab.add(word)
    for word in brc_data.word_iter('dev'):
        vocab.add(word)
    for word in brc_data.word_iter('test'):
        vocab.add(word)

    logger.info('Assigning embeddings...')
    vocab.load_pretrained_char_embeddings(args.char_embed)
    vocab.load_pretrained_word_embeddings(args.word_embed)
    vocab.randomly_init_embeddings(args.pos_embed_dim)

    logger.info('Saving vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
github gt-ros-pkg / hrl / hrl / ml_lib / src / ml_lib / dimreduce.py View on Github external
u, s, _ = pca(data)
    #u, s, _ = pca(data)
    #import pdb
    #pdb.set_trace()

    number_of_vectors = pca_variance_threshold(s, percent_variance=percent_variance)
    return np.matrix(u[:,0:number_of_vectors+1])

def randomized_vectors(dataset, number_of_vectors):
    rvectors = np.matrix(np.random.random_sample((dataset.num_attributes(), number_of_vectors))) * 2 - 1.0
    lengths  = np.diag(1.0 / np.power(np.sum(np.power(rvectors, 2), axis=0), 0.5))
    return rvectors * lengths

##
# Dataset which performs linear dimensionality reduction
class LinearDimReduceDataset(ds.Dataset):

    def __init__(self, inputs, outputs):
        ds.Dataset.__init__(self, inputs, outputs)
        self.original_inputs = inputs

    ##
    # Project this dataset's input instances (stores original instances) 
    def reduce_input(self):
        self.original_inputs = self.inputs
        self.inputs =  self.projection_basis.T * self.inputs

    ##
    # Projection vectors are assumed to be column vectors
    def set_projection_vectors(self, vec):
        self.projection_basis = vec
github adamkhazi / information-extraction-system / cli_menu.py View on Github external
def train_model(self, nr_of_files=-1):
        self.logger.println("train model called")
        start_time = timeit.default_timer()
        cs = CrfSuite()

        dataset = Dataset()
        data = dataset.read(nr_of_files=nr_of_files)
        nr_of_filled_lines, data1 = dataset.filter_for_filled_tags(data)
        data2 = dataset.obtain_default_tags(nr_of_filled_lines*3, data)
        data = data1 + data2
        data = dataset.shuffle_data(data)
        train_set, test_set = dataset.split_dataset(data)

        we_model = WeModel()
        w2v_model = we_model.train(data) # optionally load a pretrained model here 
        we_model.save(w2v_model)
        we_model = None

        word2count, word2idx = dataset.encode_dataset(train_set)

        f_generator = FeatureGenerator(w2v_model, word2count, word2idx)
        w2v_model = None