Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _apply_softmax(x):
x[:, :] = np.exp(x - x.max(axis=1).reshape((-1, 1)))
x[:, :] = x / x.sum(axis=1).reshape((-1, 1))
return None
class _FixedPredictor:
def __init__(self):
pass
def fit(self, X=None, y=None, sample_weight=None):
pass
def decision_function_w_sigmoid(self, X):
return self.decision_function(X)
class _BetaPredictor(_FixedPredictor):
def __init__(self, a, b):
self.a = a
self.b = b
def predict_proba(self, X):
preds = np.random.beta(self.a, self.b, size = X.shape[0]).reshape((-1, 1))
return np.c_[1.0 - preds, preds]
def decision_function(self, X):
return np.random.beta(self.a, self.b, size = X.shape[0])
def predict(self, X):
return (np.random.beta(self.a, self.b, size = X.shape[0])).astype('uint8')
def predict_avg(self, X):
pred = self.decision_function(X)
def predict_avg(self, X):
pred = self.decision_function(X)
_apply_inverse_sigmoid(pred)
return pred
def predict_rnd(self, X):
return self.predict_avg(X)
def predict_ucb(self, X):
return self.predict_avg(X)
def exploit(self, X):
return np.repeat(self.a / self.b, X.shape[0])
class _ZeroPredictor(_FixedPredictor):
def predict_proba(self, X):
return np.c_[np.ones((X.shape[0], 1)), np.zeros((X.shape[0], 1))]
def decision_function(self, X):
return np.zeros(X.shape[0])
def predict(self, X):
return np.zeros(X.shape[0])
def predict_avg(self, X):
return np.repeat(-1e6, X.shape[0])
def predict_rnd(self, X):
return self.predict_avg(X)
def decision_function(self, X):
return np.zeros(X.shape[0])
def predict(self, X):
return np.zeros(X.shape[0])
def predict_avg(self, X):
return np.repeat(-1e6, X.shape[0])
def predict_rnd(self, X):
return self.predict_avg(X)
def predict_ucb(self, X):
return self.predict_avg(X)
class _OnePredictor(_FixedPredictor):
def predict_proba(self, X):
return np.c_[np.zeros((X.shape[0], 1)), np.ones((X.shape[0], 1))]
def decision_function(self, X):
return np.ones(X.shape[0])
def predict(self, X):
return np.ones(X.shape[0])
def predict_avg(self, X):
return np.repeat(1e6, X.shape[0])
def predict_rnd(self, X):
return self.predict_avg(X)
def decision_function(self, X):
return np.ones(X.shape[0])
def predict(self, X):
return np.ones(X.shape[0])
def predict_avg(self, X):
return np.repeat(1e6, X.shape[0])
def predict_rnd(self, X):
return self.predict_avg(X)
def predict_ucb(self, X):
return self.predict_avg(X)
class _RandomPredictor(_FixedPredictor):
def _gen_random(self, X):
return np.random.random(size = X.shape[0])
def predict(self, X):
return (self._gen_random(X) >= .5).astype('uint8')
def decision_function(self, X):
return np.random.random(size = X.shape[0])
def predict_proba(self, X):
pred = self._gen_random(X)
return np.c[pred, 1 - pred]
class _BootstrappedClassifierBase:
def __init__(self, base, nsamples, percentile = 80, partialfit = False, partial_method = "gamma", njobs = 1):
self.bs_algos = [deepcopy(base) for n in range(nsamples)]