How to use the cntk.internal.sanitize_input function in cntk

To help you get started, we’ve selected a few cntk examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
>>> C.greater([41., 42., 43.], [42., 42., 42.]).eval()
        array([ 0.,  0.,  1.], dtype=float32)

        >>> C.greater([-1,0,1], [0]).eval()
        array([ 0.,  0.,  1.], dtype=float32)

    Args:
        left: left side tensor
        right: right side tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import greater
    dtype = get_data_type(left, right)
    left = sanitize_input(left, dtype)
    right = sanitize_input(right, dtype)
    return greater(left, right, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
array([ 1.,  0.,  0.], dtype=float32)

       >>> C.less([-1,0,1], [0]).eval()
       array([ 1.,  0.,  0.], dtype=float32)

    Args:
        left: left side tensor
        right: right side tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import less
    dtype = get_data_type(left, right)
    left = sanitize_input(left, dtype)
    right = sanitize_input(right, dtype)
    return less(left, right, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
>>> C.less([41., 42., 43.], [42., 42., 42.]).eval()
       array([ 1.,  0.,  0.], dtype=float32)

       >>> C.less([-1,0,1], [0]).eval()
       array([ 1.,  0.,  0.], dtype=float32)

    Args:
        left: left side tensor
        right: right side tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import less
    dtype = get_data_type(left, right)
    left = sanitize_input(left, dtype)
    right = sanitize_input(right, dtype)
    return less(left, right, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
>>> C.reduce_min( x * 1.0, (C.Axis.default_batch_axis(), 1)).eval({x: data}).round(4)
        array([[ 1.],
               [ 2.]], dtype=float32)

    Args:
        x: input tensor
        axis (int or :class:`~cntk.axis.Axis` or a list of integers or a list of :class:`~cntk.axis.Axis`): axis along which the reduction will be performed
        name (str): the name of the Function instance in the network

    Returns:
        :class:`~cntk.ops.functions.Function`

     Note that CNTK keeps the shape of the resulting tensors when reducing over multiple static axes.
    '''
    from cntk.cntk_py import reduce_min
    x = sanitize_input(x)
    axis = sanitize_axis_list(axis)
    return reduce_min(x, axis, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
:math:`sigmoid(x) = {1 \over {1+\exp(-x)}}`

    The output tensor has the same shape as ``x``.

    Example:
        >>> C.sigmoid([-2, -1., 0., 1., 2.]).eval()
        array([ 0.119203,  0.268941,  0.5     ,  0.731059,  0.880797], dtype=float32)

    Args:
        x: numpy array or any :class:`~cntk.ops.functions.Function` that outputs a tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import sigmoid
    x = sanitize_input(x)
    return sigmoid(x, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
>>> dest.asarray()
        array([[ 2.,  2.,  2.,  2.],
               [ 2.,  2.,  2.,  2.],
               [ 2.,  2.,  2.,  2.]], dtype=float32)

    Args:
        ref: class: `~cntk.variables.Constant` or `~cntk.variables.Parameter`.
        input: class:`~cntk.ops.functions.Function` that outputs a tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import assign
    dtype = get_data_type(input)
    operand = sanitize_input(input, dtype)
    ref_operand = sanitize_input(ref, dtype)
    return assign(ref_operand, operand, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
[ 13.,  15.]]]], dtype=float32)

    Args:
        operand: pooling input
        pooling_type: one of :const:`~cntk.ops.MAX_POOLING` or :const:`~cntk.ops.AVG_POOLING`
        pooling_window_shape: dimensions of the pooling window
        strides (default 1): strides.
        auto_padding (default [False,]): automatic padding flags for each input dimension.
        ceil_out_dim (default False): ceiling while computing output size
        include_pad(default False): include pad while average pooling
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import pooling
    operand = sanitize_input(operand)
    pooling_window_shape, strides, auto_padding = sanitize_pooling_args(pooling_window_shape, strides, auto_padding)
    return pooling(operand, pooling_type, pooling_window_shape, strides, auto_padding,
                   ceil_out_dim, include_pad, name)
github microsoft / CNTK / bindings / python / cntk / metrics / __init__.py View on Github external
>>> s = np.array([2, 1, 3, 1], dtype=np.float32).reshape(4,1,1)
        >>> n = np.array([7, 1, 3, 1], dtype=np.float32).reshape(4,1,1)
        >>> C.ndcg_at_1(score, gain, group).eval({score:s, gain:n, group: g})
        array(400.0, dtype=float32)

    Args:
        output: score of each sample
        gain: gain of each sample
        group: group of each sample
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import ndcg_at_1
    dtype = get_data_type(output, gain, group)
    output = sanitize_input(output, dtype)
    gain = sanitize_input(gain, dtype)
    group = sanitize_input(group, dtype)
    return ndcg_at_1(output, gain, group, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
[ 19.]
          [ 21.]]]

    Args:
        left: left side tensor
        right: right side matrix or vector
        name (str, optional): the name of the Function instance in the network

    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import times_transpose
    dtype = get_data_type(left, right)
    left = sanitize_input(left, dtype)
    rshape = sanitize_shape(right.shape)
    right = sanitize_input(right, dtype, (1,rshape[0]) if len(rshape) == 1 else None)
    return times_transpose(right, left, 1, name)
github microsoft / CNTK / bindings / python / cntk / ops / __init__.py View on Github external
The output tensor has the same shape as ``x``.

    Example:
        >>> np.round(C.cosh([[1,0.5],[-0.25,-0.75]]).eval(),5)
        array([[ 1.54308,  1.12763],
               [ 1.03141,  1.29468]], dtype=float32)

    Args:
        x: numpy array or any :class:`~cntk.ops.functions.Function` that outputs a tensor
        name (str, optional): the name of the Function instance in the network
    Returns:
        :class:`~cntk.ops.functions.Function`
    '''
    from cntk.cntk_py import cosh
    x = sanitize_input(x)
    return cosh(x, name)