Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __call__(self, x, t):
h = chainer.functions.relu(self.conv(x))
y = self.fc(h)
self.loss = chainer.functions.softmax_cross_entropy(y, t)
self.accuracy = chainer.functions.accuracy(y, t)
return self.loss
def __call__(self, x, t):
h = F.relu(self.mlpconv1(x))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.dropout(h, ratio=0.5, train=self.train)
h = F.relu(self.mlpconv2(h))
h = F.average_pooling_2d(h, 3, stride=2)
h = F.dropout(h, ratio=0.5, train=self.train)
h = self.mlpconv3(h)
h = F.average_pooling_2d(h, h.data.shape[2])
self.y = F.reshape(h, (x.data.shape[0], 10))
self.pred = F.softmax(self.y)
self.loss = F.softmax_cross_entropy(self.y, t)
self.accuracy = F.accuracy(self.y, t)
if self.train:
return self.loss
else:
return self.pred
def __call__(self, x, train):
h = F.relu(self.bn1(self.conv1(x), test=not train))
h = F.relu(self.bn2(self.conv2(h), test=not train))
h = self.bn3(self.conv3(h), test=not train)
return F.relu(h + x)
#a = F.relu(self.bn7(self.conv7(a)))
#a = F.relu(self.bn8(self.conv8(a)))
a = F.relu(self.bn9(self.conv9(a)))
a = F.relu(self.bn10(self.conv10(a)))
a = F.relu(self.bn11(self.conv11(a)))
a = F.relu(self.bn12(self.conv12(a)))
#a = F.relu(self.bn13(self.conv13(a)))
#a = F.relu(self.bn14(self.conv14(a)))
a = F.relu(self.bn15(self.conv15(a)))
a = F.concat([a[:,i,:,:] for i in range(a.shape[1])], axis=2)[:,xp.newaxis,:,:]
import numpy as np
# ===== Visual Streams ===== #
b = F.relu(self.bn_1(self.conv_1(face1)))
b = F.relu(self.bn_2(self.conv_2(b)))
b = F.relu(self.bn_3(self.conv_3(b)))
b = F.relu(self.bn_4(self.conv_4(b)))
b = F.relu(self.bn_5(self.conv_5(b)))
#b = F.relu(self.bn_6(self.conv_6(b)))
b = F.resize_images(b, (N, 1))
c = F.relu(self.bn_1(self.conv_1(face2)))
c = F.relu(self.bn_2(self.conv_2(c)))
c = F.relu(self.bn_3(self.conv_3(c)))
c = F.relu(self.bn_4(self.conv_4(c)))
c = F.relu(self.bn_5(self.conv_5(c)))
#c = F.relu(self.bn_6(self.conv_6(c)))
c = F.resize_images(c, (N, 1))
# ===== Fusion Stream ===== #
x = F.concat((b, c))
x = F.transpose(x, (0,3,2,1))
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
def __call__(self, x, train):
h = F.relu(self.bn1(self.conv1(x), test=not train))
h = F.relu(self.bn2(self.conv2(h), test=not train))
h = self.bn3(self.conv3(h), test=not train)
return F.relu(h + x)
def __call__(self, s, action_history):
h1 = F.relu(self.l1(s/255.0))
h2 = F.relu(self.l2(h1))
h3 = F.relu(self.l3(h2))
h4 = F.relu(self.l4(h3))
output = self.l5(h4)
return output
def forward(self, x, t):
h = F.max_pooling_2d(F.relu(self.mlpconv1(x)), 3, stride=2)
h = F.max_pooling_2d(F.relu(self.mlpconv2(h)), 3, stride=2)
h = F.max_pooling_2d(F.relu(self.mlpconv3(h)), 3, stride=2)
h = self.mlpconv4(F.dropout(h))
h = F.reshape(F.average_pooling_2d(h, 6), (len(x), 1000))
#loss = F.softmax_cross_entropy(h, t)
loss = self.softmax_cross_entropy(h, t)
if self.compute_accuracy:
chainer.report({'loss': loss, 'accuracy': F.accuracy(h, t)}, self)
else:
chainer.report({'loss': loss}, self)
return loss