How to use the chainer.functions function in chainer

To help you get started, we’ve selected a few chainer examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github espnet / espnet / espnet / nets / chainer_backend / rnn / encoders.py View on Github external
chainer.Variable: Subsampled vector of xs.
            chainer.Variable: Subsampled vector of ilens.

        """
        logging.info(self.__class__.__name__ + ' input lengths: ' + str(ilens))

        # x: utt x frame x dim
        xs = F.pad_sequence(xs)

        # x: utt x 1 (input channel num) x frame x dim
        xs = F.swapaxes(
            xs.reshape(xs.shape[0], xs.shape[1], self.in_channel, xs.shape[2] // self.in_channel), 1, 2)

        xs = F.relu(self.conv1_1(xs))
        xs = F.relu(self.conv1_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        xs = F.relu(self.conv2_1(xs))
        xs = F.relu(self.conv2_2(xs))
        xs = F.max_pooling_2d(xs, 2, stride=2)

        # change ilens accordingly
        ilens = self.xp.array(self.xp.ceil(self.xp.array(
            ilens, dtype=np.float32) / 2), dtype=np.int32)
        ilens = self.xp.array(self.xp.ceil(self.xp.array(
            ilens, dtype=np.float32) / 2), dtype=np.int32)

        # x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
        xs = F.swapaxes(xs, 1, 2)
        xs = xs.reshape(xs.shape[0], xs.shape[1], xs.shape[2] * xs.shape[3])
        xs = [xs[i, :ilens[i], :] for i in range(len(ilens))]
github chainer / chainer / tests / chainer_tests / functions_tests / array_tests / test_stack.py View on Github external
def check_forward(self, xs_data):
        xs = [chainer.Variable(x) for x in xs_data]
        y = functions.stack(xs, axis=self.axis)

        if hasattr(numpy, 'stack'):
            # run test only with numpy>=1.10
            expect = numpy.stack(self.xs, axis=self.axis)
            testing.assert_allclose(y.data, expect)

        y_data = cuda.to_cpu(y.data)
        self.assertEqual(y_data.shape[self.axis], 2)
        numpy.testing.assert_array_equal(
            y_data.take(0, axis=self.axis), self.xs[0])
        numpy.testing.assert_array_equal(
            y_data.take(1, axis=self.axis), self.xs[1])
github chainer / chainer / tests / chainer_tests / functions_tests / array_tests / test_transpose.py View on Github external
def check_backward(self, x_data):
        x = chainer.Variable(x_data)
        y = functions.transpose(x, self.axes)
        y.grad = y.data
        y.backward()
        testing.assert_allclose(x.data, x.grad, atol=0, rtol=0)
github daigo0927 / compare-deeplibs / legacy / train_chainer.py View on Github external
def __call__(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pooling_2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pooling_2d(x, 2, 2)
        return self.fc(x)
github audiofhrozen / motion_dance / deepdancer / models / net_s2s.py View on Github external
def __call__(self, variables):
        in_audio, context, nx_step = variables
        self.loss = loss = 0
        state = self.state
        batchsize, sequence = in_audio.shape[0:2]
        for i in range(sequence):
            h = self.audiofeat(in_audio[:, i])
            state, y = self.forward(state, context, h)
            loss += F.mean_squared_error(nx_step[:, i], y)  # F.mean_squared_error mean_absolute_error
            context = y
        self.loss = loss
        chainer.report({'loss': loss
                        }, self)
        stdout.write('loss={:.04f}\r'.format(float(chainer.cuda.to_cpu(loss.data))))
        stdout.flush()
        return self.loss
github vecto-ai / vecto / vecto / benchmarks / text_classification / nets.py View on Github external
embed (callable): A :func:`~chainer.functions.embed_id` function
            or :class:`~chainer.links.EmbedID` link.
        xs (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`): i-th element in the list is an input variable,
            which is a :math:`(L_i, )`-shaped int array.
        dropout (float): Dropout ratio.

    Returns:
        list of ~chainer.Variable: Output variables. i-th element in the
        list is an output variable, which is a :math:`(L_i, N)`-shaped
        float array. :math:`(N)` is the number of dimensions of word embedding.

    """
    x_len = [len(x) for x in xs]
    x_section = numpy.cumsum(x_len[:-1])
    ex = embed(F.concat(xs, axis=0))
    ex = F.dropout(ex, ratio=dropout)
    exs = F.split_axis(ex, x_section, 0)
    return exs
github musyoku / chainer-sru / sru / nn.py View on Github external
def __call__(self, x):
		return functions.unpooling_2d(x, self.ksize, self.stride, self.pad, self.outsize, self.cover_all)
github mitmul / chainer-cifar10 / models / vgg_model.py View on Github external
def __init__(self):
        super(Vgg, self).__init__(
            conv1=F.Convolution2D(3, 64, 3, stride=1, pad=1),
            conv2=F.Convolution2D(64, 64, 3, stride=1, pad=1),

            conv3=F.Convolution2D(64, 128, 3, stride=1, pad=1),
            conv4=F.Convolution2D(128, 128, 3, stride=1, pad=1),
            conv5=F.Convolution2D(128, 128, 3, stride=1, pad=1),

            conv6=F.Convolution2D(128, 128, 3, stride=1, pad=1),
            conv7=F.Convolution2D(128, 128, 3, stride=1, pad=1),
            conv8=F.Convolution2D(128, 128, 3, stride=1, pad=1),

            conv9=F.Convolution2D(128, 256, 3, stride=1, pad=1),
            conv10=F.Convolution2D(256, 256, 3, stride=1, pad=1),
            conv11=F.Convolution2D(256, 256, 3, stride=1, pad=1),

            conv12=F.Convolution2D(256, 256, 3, stride=1, pad=1),
            conv13=F.Convolution2D(256, 256, 3, stride=1, pad=1),
github DwangoMediaVillage / Comicolorization / comicolorization / models / ltbc / low_level.py View on Github external
def __call__(self, x, test=False):
        # type: (any, bool) -> any
        h = x
        h = chainer.functions.relu(self.bn1_1(self.conv1_1(h), test=test))
        h = chainer.functions.relu(self.bn1_2(self.conv1_2(h), test=test))
        h = chainer.functions.relu(self.bn2_1(self.conv2_1(h), test=test))
        h = chainer.functions.relu(self.bn2_2(self.conv2_2(h), test=test))
        h = chainer.functions.relu(self.bn3_1(self.conv3_1(h), test=test))
        h = chainer.functions.relu(self.bn3_2(self.conv3_2(h), test=test))
        return h
github osmr / imgclsmob / chainer_ / chainercv2 / models / airnet.py View on Github external
super(AirUnit, self).__init__()
        self.resize_identity = (in_channels != out_channels) or (stride != 1)

        with self.init_scope():
            self.body = AirBottleneck(
                in_channels=in_channels,
                out_channels=out_channels,
                stride=stride,
                ratio=ratio)
            if self.resize_identity:
                self.identity_conv = conv1x1_block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    stride=stride,
                    activation=None)
            self.activ = F.relu