How to use the bokeh.plotting.output_file function in bokeh

To help you get started, we’ve selected a few bokeh examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github bokeh / bokeh / sphinx / source / docs / tutorials / solutions / olympics.py View on Github external
from bokeh.plotting import figure, output_file, show, VBox
from bokeh.sampledata.olympics2014 import data

data = { d['abbr']: d['medals'] for d in data['data'] if d['medals']['total'] > 0}

# pull out just the data we care about
countries = sorted(
                   data.keys(),
    key=lambda x: data[x]['total'], reverse=True
)
gold = np.array([data[abbr]['gold'] for abbr in countries], dtype=np.float)
silver = np.array([data[abbr]['silver'] for abbr in countries], dtype=np.float)
bronze = np.array([data[abbr]['bronze'] for abbr in countries], dtype=np.float)

# EXERCISE: output static HTML file
output_file('olympics.html')

# create a figure()
p1 = figure(title="Olympic Medals by Country (stacked)", tools="",
            x_range=countries, y_range=[0, max(gold+silver+bronze)],
            background_fill='#59636C', plot_width=800
    )

# use the `rect` renderer to display stacked bars of the medal results. Note
# that we set y_range explicitly on the first renderer
p1.rect(x=countries, y=bronze/2, width=0.8, height=bronze, color="#CD7F32", alpha=0.6)
p1.rect(x=countries, y=bronze+silver/2, width=0.8, height=silver, color="silver", alpha=0.6)

# EXERCISE: add a `rect` renderer to stack the gold medal results
p1.rect(x=countries, y=bronze+silver+gold/2, width=0.8, height=gold, color="gold", alpha=0.6)

# EXERCISE: use grid(), axis(), etc. to style the plot. Some suggestions:
github hplgit / fdm-book / doc / .src / chapters / vib / src-vib / vib_undamped.py View on Github external
def bokeh_plot(u, t, legends, I, w, t_range, filename):
    """
    Make plots for u vs t using the Bokeh library.
    u and t are lists (several experiments can be compared).
    legens contain legend strings for the various u,t pairs.
    """
    if not isinstance(u, (list,tuple)):
        u = [u]  # wrap in list
    if not isinstance(t, (list,tuple)):
        t = [t]  # wrap in list
    if not isinstance(legends, (list,tuple)):
        legends = [legends]  # wrap in list

    import bokeh.plotting as plt
    plt.output_file(filename, mode='cdn', title='Comparison')
    # Assume that all t arrays have the same range
    t_fine = np.linspace(0, t[0][-1], 1001)  # fine mesh for u_e
    tools = 'pan,wheel_zoom,box_zoom,reset,'\
            'save,box_select,lasso_select'
    u_range = [-1.2*I, 1.2*I]
    font_size = '8pt'
    p = []  # list of plot objects
    # Make the first figure
    p_ = plt.figure(
        width=300, plot_height=250, title=legends[0],
        x_axis_label='t', y_axis_label='u',
        x_range=t_range, y_range=u_range, tools=tools,
        title_text_font_size=font_size)
    p_.xaxis.axis_label_text_font_size=font_size
    p_.yaxis.axis_label_text_font_size=font_size
    p_.line(t[0], u[0], line_color='blue')
github titipata / grant_database / summary / summarize_grants.py View on Github external
df = summarize_grant(group_grant_df, dedupe_id=args.index, grant_type=grant_type).fillna('')
    x = 'year'
    y = 'n_grants'
    val = 'amount'
    f = figure(
        width=args.width,
        height=args.height,
        title=affiliation_dict[args.index].title(),
        y_axis_type="log",
        x_axis_label="year",
        x_range=[1970, 2020],
        y_range=[np.min(df[y])-5, np.max(df[y])*2],
        y_axis_label="Number of grants",
        tools = "save"
    )
    output_file(args.output)
    if len(df) == 0:
        print("no grants found for this dedupe index...")
    else:
        fig = scatter_with_hover(df, x, y, fig=f, marker='o', cols=[x, y, val])
        show(fig)
github heronyang / airport-simulation / asset / simulator / utils / airport.py View on Github external
def main():
    nodes = pd.read_table('../data/KDFW/nodes.txt', comment='#', header=None)
    nodes.columns = ['x', 'y', 'ind', 'name', 'type', 'to', 'from']
    nodes.reset_index('ind', inplace=True)
    nodes.dropna(inplace=True)
    nodes[['x', 'y']] = nodes[['x', 'y']].astype(float).astype(int)
    nodes['color'] = 'teal'
    links = pd.read_table('../data/KDFW/links.txt', comment='#', header=None)
    links.dropna(inplace=True)
    links[[0, 1, 2]] = links[[0, 1, 2]].astype(int)

    # initialize plot
    plt.output_file("KDFW_Map_Viewer.html")
    tools = "pan,wheel_zoom,box_zoom,reset,hover,previewsave"
    plt.figure(title='', tools=tools, x_range=[-1000, 1000], y_range=[-500, 1500], plot_width=1200, plot_height=1200)
    plt.hold()

    lx, ly = [], []
    for i in range(len(links)):
        n1 = nodes.loc[links.iloc[i, 1], :]
        n2 = nodes.loc[links.iloc[i, 2], :]
        lx.append([n1.x, n2.x])
        ly.append([n1.y, n2.y])

    source = plt.ColumnDataSource(data=nodes)
    plt.multi_line(lx, ly, line_width=1.0, color='darkgrey')
    plt.scatter('x', 'y', color='color', source=source, fill_alpha=0.5, radius=5)
    a = nodes.to_dict('list')
    plt.text(a['x'], a['y'], text=a['ind'], angle=0, text_font_size='8pt')
github syedur-rahman / pyability / scripts / p03_parse_bgp / graphbgp.py View on Github external
def graph_bgp(label_dict, redundancy_counts, x_ticks):
    """ graph bgp
    the main graphing function used to graph the given dataset
    we will be graphing this two ways - full and downsampled
    for computers that cannot handle the full graph, please use the downsampled
    data set in order to see the graph without hassle """

    # define output html file
    output_file("bgpgraph.html")

    # define the figure initial parameters
    p = figure(
        title="INTERNET'S REDUNDANCY", # title
        toolbar_location="above",  # toolbar location
        sizing_mode='stretch_both',  # sizing parameters of the graph
        output_backend="webgl", # allows us to utilize webgl to reduce load
        )

    # draw circles with size 1, color navy, and semi transparent for each datapoint
    p.circle(x_ticks, redundancy_counts, size=1, color="navy", alpha=0.5)

    # x axis label
    p.xaxis.axis_label = 'IPv4 Routes'

    # y axis label
github colinmorris / char-rbm / visualize.py View on Github external
def visualize_hidden_activations(model, example_fname, out="activations.html"):
    bokeh.plotting.output_file(out, title="Hidden activations - {}".format(model.name))
    figures = []
    n = 300 # TODO: make configurable
    vecs = common.vectors_from_txtfile(example_fname, model.codec, limit=n) 
    for n_gibbs in [0, 5, 1000]:
        if n_gibbs > 0:
            vecs = model.repeated_gibbs(vecs, n_gibbs)
        # TODO: Visualize hidden probabilities to avoid sampling noise? Should at least offer option
        hiddens = model._sample_hiddens(vecs)
        y, x = np.nonzero(hiddens)
        max_y, max_x = hiddens.shape
        hidden_counts = np.sum(hiddens, axis=0)
        n_dead = (hidden_counts == 0).sum()
        n_immortal = (hidden_counts == n).sum()
        p = bokeh.plotting.figure(title="After {} rounds of Gibbs sampling. Dead = {}. Immortal = {}".format(n_gibbs, n_dead, n_immortal),
                    x_axis_location="above", x_range=(0,hiddens.shape[1]), y_range=(0,hiddens.shape[0])
        )
github TeamHG-Memex / domain-discovery-crawler / dd_crawler / commands / response_stats.py View on Github external
def save_plot(plot, title, suffix, output):
    if output:
        filename = '{}-{}.html'.format(output, suffix)
        print('Saving plot to {}'.format(filename))
        bokeh.plotting.output_file(filename, title=title, mode='inline')
        bokeh.plotting.save(plot)
    else:
        bokeh.plotting.show(plot)
github hdm-dt-fb / rvt_model_services / commands / qc / bokeh_qc_graphs.py View on Github external
def update_graphs(project_code, html_path):
    pd.set_option('display.width', 1800)
    html_path = op.join(html_path, "{0}.html".format(project_code))

    qc_path = op.dirname(op.abspath(__file__))
    commands_dir = op.dirname(qc_path)
    root_dir = op.dirname(commands_dir)
    log_dir = op.join(root_dir, "logs")

    csv_path = op.join(log_dir, project_code + ".csv")

    csv = pd.read_csv(csv_path, delimiter=";")
    csv.timeStamp = pd.to_datetime(csv.timeStamp)

    output_file(html_path, mode="inline")

    topics = {"q_": "QC",
              "l_": "LINKS",
              "g_": "GROUPS",
              "v_": "VIEWS",
              "d_": "2D",
              "s_": "STYLES",
              "e_": "ELEMENTS",
              "m_": "PROJECT_SQM",
              }

    graphs = graph(csv, project_code, topics)

    save(column(graphs), validate=False)
    print(colorful.bold_green(f" {html_path} updated successfully."))
github bokeh / bokeh / examples / plotting / file / categorical.py View on Github external
factors = ["foo 123", "bar:0.2", "baz-10"]
x = ["foo 123", "foo 123", "foo 123", "bar:0.2", "bar:0.2", "bar:0.2", "baz-10",  "baz-10",  "baz-10"]
y = ["foo 123", "bar:0.2", "baz-10",  "foo 123", "bar:0.2", "baz-10",  "foo 123", "bar:0.2", "baz-10"]
colors = [
    "#0B486B", "#79BD9A", "#CFF09E",
    "#79BD9A", "#0B486B", "#79BD9A",
    "#CFF09E", "#79BD9A", "#0B486B"
]

hm = figure(title="Categorical Heatmap", tools="hover", toolbar_location=None,
            x_range=factors, y_range=factors)

hm.rect(x, y, color=colors, width=1, height=1)

output_file("categorical.html", title="categorical.py example")

show(row(hm, dot, sizing_mode="scale_width"))  # open a browser