Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
Function which converts a dictionary of sampled parameter to a
dictionary of parameters of the population model.
max_samples: int, optional
Maximum number of samples to use from each set.
cupy: bool
If True and a compatible CUDA environment is available,
cupy will be used for performance.
Note: this requires setting up your hyper_prior properly.
"""
if cupy and not CUPY_LOADED:
logger.warning("Cannot import cupy, falling back to numpy.")
self.samples_per_posterior = max_samples
self.data = self.resample_posteriors(posteriors, max_samples=max_samples)
if not isinstance(hyper_prior, Model):
hyper_prior = Model([hyper_prior])
self.hyper_prior = hyper_prior
Likelihood.__init__(self, hyper_prior.parameters)
if sampling_prior is not None:
raise ValueError(
"Passing a sampling_prior is deprecated and will be removed "
"in the next release. This should be passed as a 'prior' "
"column in the posteriors."
)
elif "prior" in self.data:
self.sampling_prior = self.data.pop("prior")
else:
logger.info("No prior values provided, defaulting to 1.")
self.sampling_prior = 1
def __init__(self, model, data):
self.vts = data.pop("vt")
self.data = data
if isinstance(model, list):
model = Model(model)
elif not isinstance(model, Model):
model = Model([model])
self.model = model
self.values = {key: xp.unique(self.data[key]) for key in self.data}
shape = np.array(list(self.data.values())[0].shape)
lens = {key: len(self.values[key]) for key in self.data}
self.axes = {int(np.where(shape == lens[key])[0]): key for key in self.data}
self.ndim = len(self.axes)
dictionary of parameters of the population model.
max_samples: int, optional
Maximum number of samples to use from each set.
cupy: bool
If True and a compatible CUDA environment is available,
cupy will be used for performance.
Note: this requires setting up your hyper_prior properly.
"""
if cupy and not CUPY_LOADED:
logger.warning("Cannot import cupy, falling back to numpy.")
self.samples_per_posterior = max_samples
self.data = self.resample_posteriors(posteriors, max_samples=max_samples)
if not isinstance(hyper_prior, Model):
hyper_prior = Model([hyper_prior])
self.hyper_prior = hyper_prior
Likelihood.__init__(self, hyper_prior.parameters)
if sampling_prior is not None:
raise ValueError(
"Passing a sampling_prior is deprecated and will be removed "
"in the next release. This should be passed as a 'prior' "
"column in the posteriors."
)
elif "prior" in self.data:
self.sampling_prior = self.data.pop("prior")
else:
logger.info("No prior values provided, defaulting to 1.")
self.sampling_prior = 1
if ln_evidences is not None:
def __init__(self, model, data):
self.vts = data.pop("vt")
self.data = data
if isinstance(model, list):
model = Model(model)
elif not isinstance(model, Model):
model = Model([model])
self.model = model
self.values = {key: xp.unique(self.data[key]) for key in self.data}
shape = np.array(list(self.data.values())[0].shape)
lens = {key: len(self.values[key]) for key in self.data}
self.axes = {int(np.where(shape == lens[key])[0]): key for key in self.data}
self.ndim = len(self.axes)
def __init__(self, model, data):
self.vts = data.pop("vt")
self.data = data
if isinstance(model, list):
model = Model(model)
elif not isinstance(model, Model):
model = Model([model])
self.model = model
self.values = {key: xp.unique(self.data[key]) for key in self.data}
shape = np.array(list(self.data.values())[0].shape)
lens = {key: len(self.values[key]) for key in self.data}
self.axes = {int(np.where(shape == lens[key])[0]): key for key in self.data}
self.ndim = len(self.axes)