Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
np.random.choice(
range(self.samples_per_posterior),
size=self.samples_per_posterior,
replace=True,
p=to_numpy(weights[ii]),
)
)
new_samples = {
key: xp.vstack(
[self.data[key][ii, new_idxs[ii]] for ii in range(self.n_posteriors)]
)
for key in self.data
}
event_weights = list(event_weights)
weight_string = " ".join([f"{float(weight):.1f}" for weight in event_weights])
logger.info(f"Resampling done, sum of weights for events are {weight_string}")
if return_weights:
return new_samples, weights
else:
return new_samples
if not isinstance(hyper_prior, Model):
hyper_prior = Model([hyper_prior])
self.hyper_prior = hyper_prior
Likelihood.__init__(self, hyper_prior.parameters)
if sampling_prior is not None:
raise ValueError(
"Passing a sampling_prior is deprecated and will be removed "
"in the next release. This should be passed as a 'prior' "
"column in the posteriors."
)
elif "prior" in self.data:
self.sampling_prior = self.data.pop("prior")
else:
logger.info("No prior values provided, defaulting to 1.")
self.sampling_prior = 1
if ln_evidences is not None:
self.total_noise_evidence = np.sum(ln_evidences)
else:
self.total_noise_evidence = np.nan
self.conversion_function = conversion_function
self.selection_function = selection_function
self.n_posteriors = len(posteriors)