Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def generate_gru_cell(self, klayer, kclayer, input_shape): # create a gru cell only
self.__check_recurrent_parameters(klayer)
config = kclayer["config"]
activation = get_activation_by_name(config["activation"],
"%s_%s" % (config["name"], config["activation"]))
inner_activation = get_activation_by_name(config["inner_activation"],
"%s_%s" % (config["name"], config["inner_activation"]))
gru = BLayer.GRU(input_size=int(input_shape[2]),
hidden_size=klayer.output_dim,
p=0.0,
activation=activation,
inner_activation=inner_activation,
wRegularizer=to_bigdl_reg(config["W_regularizer"]),
uRegularizer=to_bigdl_reg(config["U_regularizer"]),
bRegularizer=to_bigdl_reg(config["b_regularizer"]),
bigdl_type="float")
return gru
def generate_simplernn_cell(self, klayer, kclayer, input_shape): # create a simplernn cell only
self.__check_recurrent_parameters(klayer)
config = kclayer["config"]
activation = get_activation_by_name(config["activation"],
"%s_%s" % (config["name"], config["activation"]))
rnn = BLayer.RnnCell(input_size=int(input_shape[2]),
hidden_size=klayer.output_dim,
activation=activation,
isInputWithBias=False,
wRegularizer=to_bigdl_reg(config["W_regularizer"]),
uRegularizer=to_bigdl_reg(config["U_regularizer"]),
bRegularizer=to_bigdl_reg(config["b_regularizer"]),
bigdl_type="float")
return rnn
def generate_lstm_cell(self, klayer, kclayer, input_shape): # create a lstm cell only
self.__check_recurrent_parameters(klayer)
config = kclayer["config"]
activation = get_activation_by_name(config["activation"],
"%s_%s" % (config["name"], config["activation"]))
inner_activation = get_activation_by_name(config["inner_activation"],
"%s_%s" % (config["name"], config["inner_activation"]))
lstm = BLayer.LSTM(input_size=int(input_shape[2]),
hidden_size=klayer.output_dim,
p=0.0,
activation=activation,
inner_activation=inner_activation,
wRegularizer=to_bigdl_reg(config["W_regularizer"]),
uRegularizer=to_bigdl_reg(config["U_regularizer"]),
bRegularizer=to_bigdl_reg(config["b_regularizer"]),
bigdl_type="float")
return lstm
def generate_convlstm2d_cell(self, klayer, kclayer, input_shape): # create a convlstm2d cell only
self.__check_recurrent_parameters(klayer)
config = kclayer["config"]
activation = get_activation_by_name(config["activation"],
"%s_%s" % (config["name"], config["activation"]))
inner_activation = get_activation_by_name(config["inner_activation"],
"%s_%s" % (config["name"], config["inner_activation"]))
convlstm = BLayer.ConvLSTMPeephole(input_size=int(input_shape[2]),
output_size=config["nb_filter"],
kernel_i=config["nb_col"],
kernel_c=config["nb_row"],
# NB: ConvLSTM doesn't serialize subsample to json file
stride=klayer.subsample[0],
padding=-1,
activation=activation,
inner_activation=inner_activation,
# NB: ConvLSTM doesn't serialize regularizers to json file
# wRegularizer=to_bigdl_reg(config["W_regularizer"]),
# uRegularizer=to_bigdl_reg(config["U_regularizer"]),
def generate_gru_cell(self, klayer, kclayer, input_shape): # create a gru cell only
self.__check_recurrent_parameters(klayer)
config = kclayer["config"]
activation = get_activation_by_name(config["activation"],
"%s_%s" % (config["name"], config["activation"]))
inner_activation = get_activation_by_name(config["inner_activation"],
"%s_%s" % (config["name"], config["inner_activation"]))
gru = BLayer.GRU(input_size=int(input_shape[2]),
hidden_size=klayer.output_dim,
p=0.0,
activation=activation,
inner_activation=inner_activation,
wRegularizer=to_bigdl_reg(config["W_regularizer"]),
uRegularizer=to_bigdl_reg(config["U_regularizer"]),
bRegularizer=to_bigdl_reg(config["b_regularizer"]),
bigdl_type="float")
return gru
def generate_lstm_cell(self, klayer, kclayer, input_shape): # create a lstm cell only
self.__check_recurrent_parameters(klayer)
config = kclayer["config"]
activation = get_activation_by_name(config["activation"],
"%s_%s" % (config["name"], config["activation"]))
inner_activation = get_activation_by_name(config["inner_activation"],
"%s_%s" % (config["name"], config["inner_activation"]))
lstm = BLayer.LSTM(input_size=int(input_shape[2]),
hidden_size=klayer.output_dim,
p=0.0,
activation=activation,
inner_activation=inner_activation,
wRegularizer=to_bigdl_reg(config["W_regularizer"]),
uRegularizer=to_bigdl_reg(config["U_regularizer"]),
bRegularizer=to_bigdl_reg(config["b_regularizer"]),
bigdl_type="float")
return lstm
def create_highway(self):
if self.config["activation"] == 'linear':
activation = None
else:
activation = get_activation_by_name(self.config["activation"],
"%s_%s" % (self.config["name"], self.config["activation"]))
blayer = BLayer.Highway(size=int(self.input_shape[1]),
with_bias=self.klayer.bias,
activation=activation,
wRegularizer=to_bigdl_reg(self.config["W_regularizer"]),
bRegularizer=to_bigdl_reg(self.config["b_regularizer"]))
return blayer