How to use the bigdl.util.common.JavaValue function in bigdl

To help you get started, we’ve selected a few bigdl examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github intel-analytics / BigDL / pyspark / bigdl / optim / optimizer.py View on Github external
>>> serveralIteration = SeveralIteration(2)
    creating: createSeveralIteration
    """
    def __init__(self, interval, bigdl_type="float"):
        """
        Create a SeveralIteration trigger.


        :param interval: interval is the "n" where an action is triggeredevery "n" iterations
        """
        JavaValue.__init__(self, None, bigdl_type, interval)


class MaxScore(JavaValue):
    """
    A trigger that triggers an action when validation score larger than "max" score


    >>> maxScore = MaxScore(0.4)
    creating: createMaxScore
    """
    def __init__(self, max, bigdl_type="float"):
        """
        Create a MaxScore trigger.


        :param max: max score
        """
        JavaValue.__init__(self, None, bigdl_type, max)
github intel-analytics / BigDL / pyspark / bigdl / optim / optimizer.py View on Github external
def __init__(self, jvalue, bigdl_type, *args):
        if (jvalue):
            assert(type(jvalue) == JavaObject)
            self.value = jvalue
        else:
            self.value = callBigDlFunc(
                bigdl_type, JavaValue.jvm_class_constructor(self), *args)
        self.bigdl_type = bigdl_type
github intel-analytics / BigDL / pyspark / bigdl / nn / keras / layer.py View on Github external
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys

from bigdl.nn.layer import Layer, Node, SharedStaticUtils, Container
from bigdl.util.common import callBigDlFunc, JTensor, JavaValue

if sys.version >= '3':
    long = int
    unicode = str


class InferShape(JavaValue):
    def __init__(self, bigdl_type="float"):
        self.bigdl_type = bigdl_type

    @classmethod
    def __to_keras_shape(cls, shape):
        return tuple([None] + shape[1:])

    def __process_shape(self, shape):
        if len(shape) == 1:
            return self.__to_keras_shape(shape[0])
        else:
            return [self.__to_keras_shape(s) for s in shape]

    def get_input_shape(self):
        """
        Return a list of shape tuples if there are multiple inputs.
github intel-analytics / BigDL / pyspark / bigdl / optim / optimizer.py View on Github external
"""
    [[Exponential]] is a learning rate schedule, which rescale the learning rate by
    lr_{n + 1} = lr * decayRate `^` (iter / decayStep)
    :param decay_step the inteval for lr decay
    :param decay_rate decay rate
    :param stair_case if true, iter / decayStep is an integer division
                     and the decayed learning rate follows a staircase function.

    >>> exponential = Exponential(100, 0.1)
    creating: createExponential
    """
    def __init__(self, decay_step, decay_rate, stair_case=False, bigdl_type="float"):
        JavaValue.__init__(self, None, bigdl_type, decay_step, decay_rate, stair_case)


class Step(JavaValue):
    """
    A learning rate decay policy, where the effective learning rate is
    calculated as base_lr * gamma ^ (floor(iter / step_size))


    :param step_size:
    :param gamma:


    >>> step = Step(2, 0.3)
    creating: createStep
    """
    def __init__(self, step_size, gamma, bigdl_type="float"):
            JavaValue.__init__(self, None, bigdl_type, step_size, gamma)

class Default(JavaValue):
github intel-analytics / analytics-zoo / pyzoo / zoo / feature / text / text_feature.py View on Github external
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys
import six
from bigdl.util.common import JavaValue
from zoo.common.utils import callZooFunc

if sys.version >= '3':
    long = int
    unicode = str


class TextFeature(JavaValue):
    """
    Each TextFeature keeps information of a single text record.
    It can include various status (if any) of a text,
    e.g. original text content, uri, category label, tokens, index representation
    of tokens, BigDL Sample representation, prediction result and so on.
    """

    def __init__(self, text=None, label=None, uri=None, jvalue=None, bigdl_type="float"):
        if text is not None:
            assert isinstance(text, six.string_types), "text of a TextFeature should be a string"
        if uri is not None:
            assert isinstance(uri, six.string_types), "uri of a TextFeature should be a string"
        if label is not None:
            super(TextFeature, self).__init__(jvalue, bigdl_type, text, int(label), uri)
        else:
            super(TextFeature, self).__init__(jvalue, bigdl_type, text, uri)
github intel-analytics / BigDL / pyspark / bigdl / optim / optimizer.py View on Github external
>>> maxScore = MaxScore(0.4)
    creating: createMaxScore
    """
    def __init__(self, max, bigdl_type="float"):
        """
        Create a MaxScore trigger.


        :param max: max score
        """
        JavaValue.__init__(self, None, bigdl_type, max)


class MinLoss(JavaValue):
    """
    A trigger that triggers an action when training loss less than "min" loss


    >>> minLoss = MinLoss(0.1)
    creating: createMinLoss
    """
    def __init__(self, min, bigdl_type="float"):
        """
        Create a MinLoss trigger.


        :param min: min loss
        """
        JavaValue.__init__(self, None, bigdl_type, min)
github intel-analytics / analytics-zoo / pyzoo / zoo / pipeline / api / net / tf_optimizer.py View on Github external
from zoo.pipeline.api.net.tf_dataset import MapDataset
from zoo.pipeline.api.net.utils import _find_placeholders, to_bigdl_optim_method
from zoo.pipeline.estimator import Estimator
from zoo.util import nest

if sys.version >= '3':
    long = int
    unicode = str


class IdentityCriterion(Criterion):
    def __init__(self):
        super(IdentityCriterion, self).__init__(None, "float")


class TFValidationMethod(JavaValue):
    def __init__(self, val_method, name, output_indices, label_indices):
        JavaValue.__init__(self, None, "float",
                           val_method, name, output_indices, label_indices)


class StatelessMetric(JavaValue):
    def __init__(self, metric_name, idx):
        self.name = metric_name
        self.idx = idx
        JavaValue.__init__(self, None, "float", metric_name, idx)


class BigDLMetric(object):
    def __init__(self, val_method, outputs, labels):
        self.val_method = val_method
        self.outputs = outputs
github intel-analytics / BigDL / pyspark / bigdl / optim / optimizer.py View on Github external
from bigdl.util.common import DOUBLEMAX
from bigdl.util.common import JTensor
from bigdl.util.common import JavaValue
from bigdl.util.common import callBigDlFunc
from bigdl.util.common import callJavaFunc
from bigdl.util.common import get_node_and_core_number
from bigdl.util.common import init_engine
from bigdl.util.common import to_list
from bigdl.dataset.dataset import *

if sys.version >= '3':
    long = int
    unicode = str


class Top1Accuracy(JavaValue):
    """
    Caculate the percentage that output's max probability index equals target.

    >>> top1 = Top1Accuracy()
    creating: createTop1Accuracy
    """
    def __init__(self, bigdl_type="float"):
        JavaValue.__init__(self, None, bigdl_type)

class TreeNNAccuracy(JavaValue):
    """
    Caculate the percentage that output's max probability index equals target.

    >>> top1 = TreeNNAccuracy()
    creating: createTreeNNAccuracy
    """
github intel-analytics / analytics-zoo / transform / vision / src / main / python / vision / image3d / transformation.py View on Github external
class FeatureTransformer(JavaValue):

    def __init__(self, bigdl_type="float", *args):
        self.value = callBigDlFunc(
            bigdl_type, JavaValue.jvm_class_constructor(self), *args)

    def transform(self, sample, bigdl_type="float"):
        return callBigDlFunc(bigdl_type, "transform", self.value, sample)

    def __call__(self, sample_rdd, bigdl_type="float"):
        return callBigDlFunc(bigdl_type, "transformRdd", self.value, sample_rdd)


class Pipeline(JavaValue):

    def __init__(self, transformers, bigdl_type="float"):
        self.transformer = callBigDlFunc(bigdl_type, "chainTransformer", transformers)

    def transform(self, sample, bigdl_type="float"):
        transformed = callBigDlFunc(bigdl_type, "transform", self.transformer, sample)
        return transformed[0].array.reshape(transformed[1].array)

    def __call__(self, sample_rdd, bigdl_type="float"):
        return callBigDlFunc(bigdl_type, "transformRdd", self.transformer, sample_rdd)


class Crop(FeatureTransformer):

    def __init__(self, start, patch_size, bigdl_type="float"):
        super(Crop, self).__init__(bigdl_type, start, patch_size)