Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
scale=(0.85, 1.25), p_scale_per_sample=0.8,
border_mode_data="nearest", border_mode_seg="nearest"),
]
elif mode == "val":
tranform_list = [# CenterCropTransform(crop_size=target_size),
ResizeTransform(target_size=target_size, order=1),
]
elif mode == "test":
tranform_list = [# CenterCropTransform(crop_size=target_size),
ResizeTransform(target_size=target_size, order=1),
]
tranform_list.append(NumpyToTensor())
return Compose(tranform_list)
if self.Config.DAUG_GAUSSIAN_BLUR:
tfs.append(GaussianBlurTransform(blur_sigma=self.Config.DAUG_BLUR_SIGMA,
different_sigma_per_channel=False,
p_per_sample=self.Config.P_SAMP))
if self.Config.DAUG_NOISE:
tfs.append(GaussianNoiseTransform(noise_variance=self.Config.DAUG_NOISE_VARIANCE,
p_per_sample=self.Config.P_SAMP))
if self.Config.DAUG_MIRROR:
tfs.append(MirrorTransform())
if self.Config.DAUG_FLIP_PEAKS:
tfs.append(FlipVectorAxisTransform())
tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float"))
#num_cached_per_queue 1 or 2 does not really make a difference
batch_gen = MultiThreadedAugmenter(batch_generator, Compose(tfs), num_processes=num_processes,
num_cached_per_queue=1, seeds=None, pin_memory=True)
return batch_gen # data: (batch_size, channels, x, y), seg: (batch_size, channels, x, y)
order_seg=0, random_crop=True, p_el_per_sample=0.2,
p_rot_per_sample=0.2, p_scale_per_sample=0.2))
if self.Config.DAUG_RESAMPLE:
tfs.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), p_per_sample=0.2))
if self.Config.DAUG_NOISE:
tfs.append(GaussianNoiseTransform(noise_variance=(0, 0.05), p_per_sample=0.2))
if self.Config.DAUG_MIRROR:
tfs.append(MirrorTransform())
if self.Config.DAUG_FLIP_PEAKS:
tfs.append(FlipVectorAxisTransform())
tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float"))
# num_cached_per_queue 1 or 2 does not really make a difference
batch_gen = MultiThreadedAugmenter(batch_generator, Compose(tfs), num_processes=num_processes,
num_cached_per_queue=1, seeds=None, pin_memory=True)
return batch_gen # data: (batch_size, channels, x, y), seg: (batch_size, channels, x, y)
angle_x=(-0.1, 0.1), angle_y=(0, 1e-8), angle_z=(0, 1e-8),
scale=(0.9, 1.4),
border_mode_data="nearest", border_mode_seg="nearest"),
]
elif mode == "val":
transform_list = [CenterCropTransform(crop_size=target_size),
ResizeTransform(target_size=target_size, order=1),
]
elif mode == "test":
transform_list = [CenterCropTransform(crop_size=target_size),
ResizeTransform(target_size=target_size, order=1),
]
transform_list.append(NumpyToTensor())
return Compose(transform_list)