Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
p_rot_per_sample=self.Config.P_SAMP,
p_scale_per_sample=self.Config.P_SAMP))
if self.Config.DAUG_RESAMPLE:
tfs.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), p_per_sample=0.2, per_channel=False))
if self.Config.DAUG_RESAMPLE_LEGACY:
tfs.append(ResampleTransformLegacy(zoom_range=(0.5, 1)))
if self.Config.DAUG_GAUSSIAN_BLUR:
tfs.append(GaussianBlurTransform(blur_sigma=self.Config.DAUG_BLUR_SIGMA,
different_sigma_per_channel=False,
p_per_sample=self.Config.P_SAMP))
if self.Config.DAUG_NOISE:
tfs.append(GaussianNoiseTransform(noise_variance=self.Config.DAUG_NOISE_VARIANCE,
p_per_sample=self.Config.P_SAMP))
if self.Config.DAUG_MIRROR:
tfs.append(MirrorTransform())
if self.Config.DAUG_FLIP_PEAKS:
tfs.append(FlipVectorAxisTransform())
tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float"))
#num_cached_per_queue 1 or 2 does not really make a difference
batch_gen = MultiThreadedAugmenter(batch_generator, Compose(tfs), num_processes=num_processes,
num_cached_per_queue=1, seeds=None, pin_memory=True)
return batch_gen # data: (batch_size, channels, x, y), seg: (batch_size, channels, x, y)
do_elastic_deform=self.Config.DAUG_ELASTIC_DEFORM,
alpha=(90., 120.), sigma=(9., 11.),
do_rotation=self.Config.DAUG_ROTATE,
angle_x=(-0.8, 0.8), angle_y=(-0.8, 0.8), angle_z=(-0.8, 0.8),
do_scale=True, scale=(0.9, 1.5), border_mode_data='constant',
border_cval_data=0,
order_data=3,
border_mode_seg='constant', border_cval_seg=0,
order_seg=0, random_crop=True, p_el_per_sample=0.2,
p_rot_per_sample=0.2, p_scale_per_sample=0.2))
if self.Config.DAUG_RESAMPLE:
tfs.append(SimulateLowResolutionTransform(zoom_range=(0.5, 1), p_per_sample=0.2))
if self.Config.DAUG_NOISE:
tfs.append(GaussianNoiseTransform(noise_variance=(0, 0.05), p_per_sample=0.2))
if self.Config.DAUG_MIRROR:
tfs.append(MirrorTransform())
if self.Config.DAUG_FLIP_PEAKS:
tfs.append(FlipVectorAxisTransform())
tfs.append(NumpyToTensor(keys=["data", "seg"], cast_to="float"))
# num_cached_per_queue 1 or 2 does not really make a difference
batch_gen = MultiThreadedAugmenter(batch_generator, Compose(tfs), num_processes=num_processes,
num_cached_per_queue=1, seeds=None, pin_memory=True)
return batch_gen # data: (batch_size, channels, x, y), seg: (batch_size, channels, x, y)