How to use the visualqc.config.default_outlier_fraction function in VisualQC

To help you get started, we’ve selected a few VisualQC examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github raamana / visualqc / visualqc / freesurfer.py View on Github external
help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))

    help_text_outlier_fraction = textwrap.dedent("""
    Fraction of outliers expected in the given sample. Must be >= 1/n and <= (n-1)/n, 
    where n is the number of samples in the current sample.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_fraction))

    help_text_outlier_feat_types = textwrap.dedent("""
    Type of features to be employed in training the outlier detection method.  It could be one of  
    'cortical' (aparc.stats: mean thickness and other geometrical features from each cortical label), 
    'subcortical' (aseg.stats: volumes of several subcortical structures), 
    or 'both' (using both aseg and aparc stats).

    Default: {}.
    \n""".format(cfg.t1_mri_features_OLD))

    help_text_disable_outlier_detection = textwrap.dedent("""
    This flag disables outlier detection and alerts altogether.
    \n""")

    in_out = parser.add_argument_group('Input and output', ' ')
github raamana / visualqc / visualqc / vqc.py View on Github external
default=cfg.default_contour_face_color, required=False,
                          help=help_text_contour_color)

    vis_args.add_argument("-a", "--alpha_set", action="store", dest="alpha_set",
                          metavar='alpha', nargs=2,
                          default=default_alpha_set,
                          required=False, help=help_text_alphas)

    outliers = parser.add_argument_group('Outlier detection',
                                         'options related to automatically detecting possible outliers')
    outliers.add_argument("-olm", "--outlier_method", action="store", dest="outlier_method",
                          default=cfg.default_outlier_detection_method, required=False,
                          help=help_text_outlier_detection_method)

    outliers.add_argument("-olf", "--outlier_fraction", action="store", dest="outlier_fraction",
                          default=cfg.default_outlier_fraction, required=False,
                          help=help_text_outlier_fraction)

    outliers.add_argument("-olt", "--outlier_feat_types", action="store", dest="outlier_feat_types",
                          default=cfg.freesurfer_features_outlier_detection, required=False,
                          help=help_text_outlier_feat_types)

    outliers.add_argument("-old", "--disable_outlier_detection", action="store_true", dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options', ' ')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=default_views, required=False, nargs='+',
                        help=help_text_views)

    layout.add_argument("-s", "--num_slices", action="store", dest="num_slices",
                        default=default_num_slices, required=False,
github raamana / visualqc / visualqc / functional_mri.py View on Github external
preproc = parser.add_argument_group('Preprocessing',
                                         'options related to preprocessing before review')

    preproc.add_argument("-np", "--no_preproc", action="store_true", dest="no_preproc",
                          required=False, help=help_text_no_preproc)

    outliers = parser.add_argument_group('Outlier detection',
                                         'options related to automatically detecting possible outliers')
    outliers.add_argument("-olm", "--outlier_method", action="store",
                          dest="outlier_method",
                          default=cfg.default_outlier_detection_method, required=False,
                          help=help_text_outlier_detection_method)

    outliers.add_argument("-olf", "--outlier_fraction", action="store",
                          dest="outlier_fraction",
                          default=cfg.default_outlier_fraction, required=False,
                          help=help_text_outlier_fraction)

    outliers.add_argument("-olt", "--outlier_feat_types", action="store",
                          dest="outlier_feat_types",
                          default=cfg.func_mri_features_OLD, required=False,
                          help=help_text_outlier_feat_types)

    outliers.add_argument("-old", "--disable_outlier_detection", action="store_true",
                          dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options',
                                       'Slice layout arragement when zooming in on a time point,\n'
                                       ' or show to the std. dev plot.')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=cfg.default_views, required=False, nargs='+',
github raamana / visualqc / visualqc / functional_mri.py View on Github external
help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))

    help_text_outlier_fraction = textwrap.dedent("""
    Fraction of outliers expected in the given sample. Must be >= 1/n and <= (n-1)/n,
    where n is the number of samples in the current sample.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_fraction))

    help_text_outlier_feat_types = textwrap.dedent("""
    Type of features to be employed in training the outlier detection method.  It could be one of
    'cortical' (aparc.stats: mean thickness and other geometrical features from each cortical label),
    'subcortical' (aseg.stats: volumes of several subcortical structures),
    or 'both' (using both aseg and aparc stats).

    Default: {}.
    \n""".format(cfg.func_mri_features_OLD))

    help_text_disable_outlier_detection = textwrap.dedent("""
    This flag disables outlier detection and alerts altogether.
    \n""")

    in_out = parser.add_argument_group('Input and output', ' ')
github raamana / visualqc / visualqc / alignment.py View on Github external
help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))

    help_text_outlier_fraction = textwrap.dedent("""
    Fraction of outliers expected in the given sample. Must be >= 1/n and <= (n-1)/n, 
    where n is the number of samples in the current sample.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_fraction))

    help_text_outlier_feat_types = textwrap.dedent("""
    Type of features to be employed in training the outlier detection method.  
    It could be one of .

    Default: {}.
    \n""".format(cfg.alignment_features_OLD))

    help_text_disable_outlier_detection = textwrap.dedent("""
    This flag disables outlier detection and alerts altogether.
    \n""")

    in_out = parser.add_argument_group('Input and output', ' ')

    in_out.add_argument("-d", "--in_dir", action="store", dest="in_dir",
                        default=cfg.default_user_dir,
github raamana / visualqc / visualqc / diffusion.py View on Github external
vis.add_argument("-dl", "--delay_in_animation", action="store",
                     dest="delay_in_animation",
                     default=cfg.delay_in_animation, required=False,
                     help=help_text_delay_in_animation)

    outliers = parser.add_argument_group('Outlier detection',
                                         'options related to automatically detecting possible outliers')
    outliers.add_argument("-olm", "--outlier_method", action="store",
                          dest="outlier_method",
                          default=cfg.default_outlier_detection_method, required=False,
                          help=help_text_outlier_detection_method)

    outliers.add_argument("-olf", "--outlier_fraction", action="store",
                          dest="outlier_fraction",
                          default=cfg.default_outlier_fraction, required=False,
                          help=help_text_outlier_fraction)

    outliers.add_argument("-olt", "--outlier_feat_types", action="store",
                          dest="outlier_feat_types",
                          default=cfg.diffusion_mri_features_OLD, required=False,
                          help=help_text_outlier_feat_types)

    # outliers.add_argument("-old", "--disable_outlier_detection", action="store_true",
    #                       dest="disable_outlier_detection",
    #                       required=False, help=help_text_disable_outlier_detection)

    # TODO re-enable it when OLD is ready for DWI
    outliers.add_argument("-old", "--disable_outlier_detection", action="store_false",
                          dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)
github raamana / visualqc / visualqc / freesurfer.py View on Github external
vis_args.add_argument("-a", "--alpha_set", action="store", dest="alpha_set",
                          metavar='alpha', nargs=2,
                          default=cfg.default_alpha_set,
                          required=False, help=help_text_alphas)

    outliers = parser.add_argument_group('Outlier detection',
                                         'options related to automatically detecting possible outliers')
    outliers.add_argument("-olm", "--outlier_method", action="store",
                          dest="outlier_method",
                          default=cfg.default_outlier_detection_method, required=False,
                          help=help_text_outlier_detection_method)

    outliers.add_argument("-olf", "--outlier_fraction", action="store",
                          dest="outlier_fraction",
                          default=cfg.default_outlier_fraction, required=False,
                          help=help_text_outlier_fraction)

    outliers.add_argument("-olt", "--outlier_feat_types", action="store",
                          dest="outlier_feat_types",
                          default=cfg.freesurfer_features_outlier_detection,
                          required=False, help=help_text_outlier_feat_types)

    outliers.add_argument("-old", "--disable_outlier_detection", action="store_true",
                          dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options', ' ')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=cfg.default_views, required=False, nargs='+',
                        help=help_text_views)
github raamana / visualqc / visualqc / t1_mri.py View on Github external
'options related to outputs')

    out_spec.add_argument("-o", "--out_dir", action="store", dest="out_dir",
                        required=False, help=help_text_out_dir,
                        default=None)

    outliers = parser.add_argument_group('Outlier detection',
                                         'options related to automatically detecting possible outliers')
    outliers.add_argument("-olm", "--outlier_method", action="store",
                          dest="outlier_method",
                          default=cfg.default_outlier_detection_method, required=False,
                          help=help_text_outlier_detection_method)

    outliers.add_argument("-olf", "--outlier_fraction", action="store",
                          dest="outlier_fraction",
                          default=cfg.default_outlier_fraction, required=False,
                          help=help_text_outlier_fraction)

    outliers.add_argument("-olt", "--outlier_feat_types", action="store",
                          dest="outlier_feat_types",
                          default=cfg.t1_mri_features_OLD, required=False,
                          help=help_text_outlier_feat_types)

    outliers.add_argument("-old", "--disable_outlier_detection", action="store_true",
                          dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options', ' ')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=cfg.default_views, required=False, nargs='+',
                        help=help_text_views)