How to use the visualqc.config.default_num_rows function in VisualQC

To help you get started, we’ve selected a few VisualQC examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github raamana / visualqc / visualqc / diffusion.py View on Github external
help_text_views = textwrap.dedent("""
    Specifies the set of views to display - could be just 1 view, or 2 or all 3.
    Example: --views 0 (typically sagittal) or --views 1 2 (axial and coronal)
    Default: {} {} {} (show all the views in the selected segmentation)
    \n""".format(cfg.default_views[0], cfg.default_views[1], cfg.default_views[2]))

    help_text_num_slices = textwrap.dedent("""
    Specifies the number of slices to display per each view.
    This must be even to facilitate better division.
    Default: {}.
    \n""".format(cfg.default_num_slices))

    help_text_num_rows = textwrap.dedent("""
    Specifies the number of rows to display per each axis.
    Default: {}.
    \n""".format(cfg.default_num_rows))

    help_text_prepare = textwrap.dedent("""
    This flag enables batch-generation of 3d surface visualizations, prior to starting any review and rating operations.

    This makes the switch from one subject to the next, even more seamless (saving few seconds :) ).

    Default: False (required visualizations are generated only on demand, which can take 5-10 seconds for each subject).
    \n""")

    help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))
github raamana / visualqc / visualqc / functional_mri.py View on Github external
help_text_views = textwrap.dedent("""
    Specifies the set of views to display - could be just 1 view, or 2 or all 3.
    Example: --views 0 (typically sagittal) or --views 1 2 (axial and coronal)
    Default: {} {} {} (show all the views in the selected segmentation)
    \n""".format(cfg.default_views[0], cfg.default_views[1], cfg.default_views[2]))

    help_text_num_slices = textwrap.dedent("""
    Specifies the number of slices to display per each view.
    This must be even to facilitate better division.
    Default: {}.
    \n""".format(cfg.default_num_slices))

    help_text_num_rows = textwrap.dedent("""
    Specifies the number of rows to display per each axis.
    Default: {}.
    \n""".format(cfg.default_num_rows))

    help_text_prepare = textwrap.dedent("""
    This flag enables batch-generation of 3d surface visualizations, prior to starting any review and rating operations.

    This makes the switch from one subject to the next, even more seamless (saving few seconds :) ).

    Default: False (required visualizations are generated only on demand, which can take 5-10 seconds for each subject).
    \n""")

    help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))
github raamana / visualqc / visualqc / vqc.py View on Github external
help=help_text_outlier_feat_types)

    outliers.add_argument("-old", "--disable_outlier_detection", action="store_true", dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options', ' ')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=default_views, required=False, nargs='+',
                        help=help_text_views)

    layout.add_argument("-s", "--num_slices", action="store", dest="num_slices",
                        default=default_num_slices, required=False,
                        help=help_text_num_slices)

    layout.add_argument("-r", "--num_rows", action="store", dest="num_rows",
                        default=default_num_rows, required=False,
                        help=help_text_num_rows)

    wf_args = parser.add_argument_group('Workflow', 'Options related to workflow e.g. to pre-generate all the visualizations required')
    wf_args.add_argument("-p", "--prepare_first", action="store_true", dest="prepare_first",
                          help=help_text_prepare)


    return parser
github raamana / visualqc / visualqc / alignment.py View on Github external
help_text_views = textwrap.dedent("""
    Specifies the set of views to display - could be just 1 view, or 2 or all 3.
    Example: --views 0 (typically sagittal) or --views 1 2 (axial and coronal)
    Default: {} {} {} (show all the views in the selected segmentation)
    \n""".format(cfg.default_views[0], cfg.default_views[1], cfg.default_views[2]))

    help_text_num_slices = textwrap.dedent("""
    Specifies the number of slices to display per each view. 
    This must be even to facilitate better division.
    Default: {}.
    \n""".format(cfg.default_num_slices))

    help_text_num_rows = textwrap.dedent("""
    Specifies the number of rows to display per each axis. 
    Default: {}.
    \n""".format(cfg.default_num_rows))

    help_text_prepare = textwrap.dedent("""
    This flag does the heavy preprocessing first, prior to starting any review and rating operations.
    Heavy processing can include computation of registration quality metrics and outlier detection etc. 
    This makes the switch from one subject to the next, even more seamless (saving few seconds :) ).

    Default: False.
    \n""")

    help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.

    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html

    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))
github raamana / visualqc / visualqc / diffusion.py View on Github external
dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options',
                                       'Slice layout arragement when zooming in on a time point,\n'
                                       ' or show to the std. dev plot.')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=cfg.default_views, required=False, nargs='+',
                        help=help_text_views)

    layout.add_argument("-s", "--num_slices", action="store", dest="num_slices",
                        default=cfg.default_num_slices, required=False,
                        help=help_text_num_slices)

    layout.add_argument("-r", "--num_rows", action="store", dest="num_rows",
                        default=cfg.default_num_rows, required=False,
                        help=help_text_num_rows)

    _wf_descr = 'Options related to workflow e.g. to pre-compute resource-intensive features,  ' \
                'and pre-generate all the visualizations required before initiating the review.'
    wf_args = parser.add_argument_group('Workflow', _wf_descr)
    wf_args.add_argument("-p", "--prepare_first", action="store_true",
                         dest="prepare_first",
                         help=help_text_prepare)

    return parser
github raamana / visualqc / visualqc / freesurfer.py View on Github external
outliers.add_argument("-old", "--disable_outlier_detection", action="store_true",
                          dest="disable_outlier_detection",
                          required=False, help=help_text_disable_outlier_detection)

    layout = parser.add_argument_group('Layout options', ' ')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=cfg.default_views, required=False, nargs='+',
                        help=help_text_views)

    layout.add_argument("-s", "--num_slices", action="store", dest="num_slices",
                        default=cfg.default_num_slices, required=False,
                        help=help_text_num_slices)

    layout.add_argument("-r", "--num_rows", action="store", dest="num_rows",
                        default=cfg.default_num_rows, required=False,
                        help=help_text_num_rows)

    wf_args = parser.add_argument_group('Workflow', 'Options related to workflow '
                                                    'e.g. to pre-compute resource-intensive features, '
                                                    'and pre-generate all the visualizations required')

    wf_args.add_argument("-ns", "--no_surface_vis", action="store_true",
                         dest="no_surface_vis", help=help_text_no_surface_vis)

    return parser
github raamana / visualqc / visualqc / quantitative.py View on Github external
vis.add_argument("-dl", "--delay_in_animation", action="store",
                     dest="delay_in_animation",
                     default=cfg.delay_in_animation, required=False,
                     help=help_text_delay_in_animation)

    layout = parser.add_argument_group('Layout options', ' ')
    layout.add_argument("-w", "--views", action="store", dest="views",
                        default=cfg.default_views, required=False, nargs='+',
                        help=help_text_views)

    layout.add_argument("-s", "--num_slices", action="store", dest="num_slices",
                        default=cfg.default_num_slices, required=False,
                        help=help_text_num_slices)

    layout.add_argument("-r", "--num_rows", action="store", dest="num_rows",
                        default=cfg.default_num_rows, required=False,
                        help=help_text_num_rows)

    wf_args = parser.add_argument_group('Workflow', 'Options related to workflow '
                                                    'e.g. to pre-compute '
                                                    'resource-intensive features, '
                                                    'and pre-generate all the '
                                                    'visualizations required')
    wf_args.add_argument("-p", "--prepare_first", action="store_true",
                         dest="prepare_first",
                         help=help_text_prepare)

    return parser
github raamana / visualqc / visualqc / freesurfer.py View on Github external
out_dir,
                 vis_type=cfg.default_vis_type,
                 label_set=cfg.default_label_set,
                 issue_list=cfg.default_rating_list,
                 mri_name=cfg.default_mri_name,
                 seg_name=cfg.default_seg_name,
                 alpha_set=cfg.default_alpha_set,
                 outlier_method=cfg.default_outlier_detection_method,
                 outlier_fraction=cfg.default_outlier_fraction,
                 outlier_feat_types=cfg.freesurfer_features_outlier_detection,
                 source_of_features=cfg.default_source_of_features_freesurfer,
                 disable_outlier_detection=False,
                 no_surface_vis=False,
                 views=cfg.default_views,
                 num_slices_per_view=cfg.default_num_slices,
                 num_rows_per_view=cfg.default_num_rows):
        """Constructor"""

        super().__init__(id_list, in_dir, out_dir,
                         outlier_method, outlier_fraction,
                         outlier_feat_types, disable_outlier_detection)

        self.issue_list = issue_list
        # in_dir_type must be freesurfer; vis_type must be freesurfer

        self.mri_name = mri_name
        self.seg_name = seg_name
        self.label_set = label_set
        self.vis_type = vis_type
        self.images_for_id = images_for_id

        self.expt_id = 'rate_freesurfer_{}'.format(self.mri_name)
github raamana / visualqc / visualqc / vqc.py View on Github external
help_text_views = textwrap.dedent("""
    Specifies the set of views to display - could be just 1 view, or 2 or all 3.
    Example: --views 0 (typically sagittal) or --views 1 2 (axial and coronal)
    Default: {} {} {} (show all the views in the selected segmentation)
    \n""".format(default_views[0], default_views[1], default_views[2]))

    help_text_num_slices = textwrap.dedent("""
    Specifies the number of slices to display per each view. 
    This must be even to facilitate better division.
    Default: {}.
    \n""".format(default_num_slices))

    help_text_num_rows = textwrap.dedent("""
    Specifies the number of rows to display per each axis. 
    Default: {}.
    \n""".format(default_num_rows))

    help_text_contour_color = textwrap.dedent("""
    Specifies the color to use for the contours overlaid on MRI (when vis_type requested prescribes contours). 
    Color can be specified in many ways as documented in https://matplotlib.org/users/colors.html
    Default: {}.
    \n""".format(cfg.default_contour_face_color))

    help_text_outlier_detection_method = textwrap.dedent("""
    Method used to detect the outliers.
    
    For more info, read http://scikit-learn.org/stable/modules/outlier_detection.html
    
    Default: {}.
    \n""".format(cfg.default_outlier_detection_method))

    help_text_outlier_fraction = textwrap.dedent("""