Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
print("Nugget:", self.variogram_model_parameters[2], "\n")
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
self.delta, self.sigma, self.epsilon = _find_statistics(
np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED)).T,
self.Z,
self.variogram_function,
self.variogram_model_parameters,
"euclidean",
)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, "\n")
if self.verbose:
print("Initializing drift terms...")
# Note that the regional linear drift values will be based
# on the adjusted coordinate system, Really, it doesn't actually
# matter which coordinate system is used here.
if "regional_linear" in drift_terms:
self.regional_linear_drift = True
if self.verbose:
print("Implementing regional linear drift.")
else:
print("Nugget:", self.variogram_model_parameters[2], "\n")
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
self.delta, self.sigma, self.epsilon = _find_statistics(
np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED)).T,
self.VALUES,
self.variogram_function,
self.variogram_model_parameters,
"euclidean",
)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, "\n")
print("Nugget:", self.variogram_model_parameters[2], "\n")
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
self.delta, self.sigma, self.epsilon = _find_statistics(
np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED)).T,
self.Z,
self.variogram_function,
self.variogram_model_parameters,
self.coordinates_type,
)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, "\n")
print("Nugget:", self.variogram_model_parameters[2], "\n")
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
self.delta, self.sigma, self.epsilon = _find_statistics(
np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED)).T,
self.VALUES,
self.variogram_function,
self.variogram_model_parameters,
"euclidean",
)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, "\n")
if self.verbose:
print("Initializing drift terms...")
# Note that the regional linear drift values will be based on the
# adjusted coordinate system. Really, it doesn't actually matter
# which coordinate system is used here.
if "regional_linear" in drift_terms:
self.regional_linear_drift = True
if self.verbose:
print("Implementing regional linear drift.")
else:
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
if enable_statistics:
self.delta, self.sigma, self.epsilon = _find_statistics(
np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED)).T,
self.Z,
self.variogram_function,
self.variogram_model_parameters,
self.coordinates_type,
)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, "\n")
else:
self.delta, self.sigma, self.epsilon, self.Q1, self.Q2, self.cR = [None] * 6
print("Nugget:", self.variogram_model_parameters[2], "\n")
if self.enable_plotting:
self.display_variogram_model()
if self.verbose:
print("Calculating statistics on variogram model fit...")
self.delta, self.sigma, self.epsilon = _find_statistics(
np.vstack((self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED)).T,
self.VALUES,
self.variogram_function,
self.variogram_model_parameters,
"euclidean",
)
self.Q1 = core.calcQ1(self.epsilon)
self.Q2 = core.calcQ2(self.epsilon)
self.cR = core.calc_cR(self.Q2, self.sigma)
if self.verbose:
print("Q1 =", self.Q1)
print("Q2 =", self.Q2)
print("cR =", self.cR, "\n")