How to use the pykrige.core._calculate_variogram_model function in PyKrige

To help you get started, we’ve selected a few PyKrige examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github bsmurphy / PyKrige / tests / test_core.py View on Github external
"power",
        variogram_models.power_variogram_model,
        False,
    )
    assert_allclose(res, np.array([1.0, 1.5, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.0, 1.4142, 1.7321, 2.0]),
        "power",
        variogram_models.power_variogram_model,
        False,
    )
    assert_allclose(res, np.array([1.0, 0.5, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.2642, 1.7293, 1.9004, 1.9634]),
        "exponential",
        variogram_models.exponential_variogram_model,
        False,
    )
    assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([0.5769, 1.4872, 1.9065, 1.9914]),
        "gaussian",
        variogram_models.gaussian_variogram_model,
        False,
    )
    assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)
github bsmurphy / PyKrige / tests / test_core.py View on Github external
def test_core_calculate_variogram_model():

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([2.05, 2.95, 4.05, 4.95]),
        "linear",
        variogram_models.linear_variogram_model,
        False,
    )
    assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([2.05, 2.95, 4.05, 4.95]),
        "linear",
        variogram_models.linear_variogram_model,
        True,
    )
    assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)
github bsmurphy / PyKrige / tests / test_core.py View on Github external
def test_core_calculate_variogram_model():

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([2.05, 2.95, 4.05, 4.95]),
        "linear",
        variogram_models.linear_variogram_model,
        False,
    )
    assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([2.05, 2.95, 4.05, 4.95]),
        "linear",
        variogram_models.linear_variogram_model,
        True,
    )
    assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.0, 2.8284271, 5.1961524, 8.0]),
        "power",
        variogram_models.power_variogram_model,
        False,
    )
    assert_allclose(res, np.array([1.0, 1.5, 0.0]), 0.001, 0.001)
github bsmurphy / PyKrige / tests / test_core.py View on Github external
"linear",
        variogram_models.linear_variogram_model,
        True,
    )
    assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.0, 2.8284271, 5.1961524, 8.0]),
        "power",
        variogram_models.power_variogram_model,
        False,
    )
    assert_allclose(res, np.array([1.0, 1.5, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.0, 1.4142, 1.7321, 2.0]),
        "power",
        variogram_models.power_variogram_model,
        False,
    )
    assert_allclose(res, np.array([1.0, 0.5, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.2642, 1.7293, 1.9004, 1.9634]),
        "exponential",
        variogram_models.exponential_variogram_model,
        False,
    )
    assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)
github bsmurphy / PyKrige / tests / test_core.py View on Github external
"power",
        variogram_models.power_variogram_model,
        False,
    )
    assert_allclose(res, np.array([1.0, 0.5, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([1.2642, 1.7293, 1.9004, 1.9634]),
        "exponential",
        variogram_models.exponential_variogram_model,
        False,
    )
    assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([0.5769, 1.4872, 1.9065, 1.9914]),
        "gaussian",
        variogram_models.gaussian_variogram_model,
        False,
    )
    assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([3.33060952, 3.85063879, 3.96667301, 3.99256374]),
        "exponential",
        variogram_models.exponential_variogram_model,
        False,
    )
    assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001)
github bsmurphy / PyKrige / tests / test_core.py View on Github external
"gaussian",
        variogram_models.gaussian_variogram_model,
        False,
    )
    assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([3.33060952, 3.85063879, 3.96667301, 3.99256374]),
        "exponential",
        variogram_models.exponential_variogram_model,
        False,
    )
    assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001)

    res = core._calculate_variogram_model(
        np.array([1.0, 2.0, 3.0, 4.0]),
        np.array([2.60487044, 3.85968813, 3.99694817, 3.99998564]),
        "gaussian",
        variogram_models.gaussian_variogram_model,
        False,
    )
    assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001)