Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
fle = fn
else:
fle = open(fn)
while 1:
lne = fle.readline().strip()
if lne:
break
spl = lne.split()
try:
dim = int(spl[0])
except IndexError:
raise ValueError("Matrix dimension expected in the first line.")
#print dim
labeled = len(spl) > 1 and spl[1] in ["labelled", "labeled"]
matrix = orange.SymMatrix(dim)
data = None
milestones = orngMisc.progressBarMilestones(dim, 100)
if labeled:
labels = []
else:
labels = [""] * dim
for li, lne in enumerate(fle):
if li > dim:
if not li.strip():
continue
raise ValueError("File to long")
spl = lne.split("\t")
if labeled:
labels.append(spl[0].strip())
pkl_file.close()
else:
fle = open(fn)
while 1:
lne = fle.readline().strip()
if lne:
break
spl = lne.split()
try:
dim = int(spl[0])
except:
msg = "Matrix dimension expected in the first line"
raise exceptions.Exception
labeled = len(spl) > 1 and spl[1] in ["labelled", "labeled"]
self.matrix = matrix = orange.SymMatrix(dim)
if labeled:
self.labels = []
else:
self.labels = [""] * dim
for li, lne in enumerate(fle):
if li > dim:
if not li.strip():
continue
msg = "File too long"
raise exceptions.IndexError
spl = lne.split("\t")
if labeled:
self.labels.append(spl[0].strip())
spl = spl[1:]
if len(spl) > dim:
msg = "Line %i too long" % li+2
def evaluateProjection(self, data):
if self.graph.data_has_discrete_class:
return self.kNNComputeAccuracy(data)
elif self.graph.data_has_continuous_class:
return 0
else:
matrix = orange.SymMatrix(len(data))
matrix.setattr('items', data)
dist = orange.ExamplesDistanceConstructor_Euclidean(data)
for i in range(len(data)):
for j in range(i+1):
matrix[i, j] = dist(data[i], data[j])
root = orange.HierarchicalClustering(matrix, linkage = orange.HierarchicalClustering.Ward, overwriteMatrix = 0)
val = self.computeTotalHeight(root)
return val, (val)
def distanceMatrix(data):
dist = orange.ExamplesDistanceConstructor_Euclidean(data)
matrix = orange.SymMatrix(len(data))
matrix.setattr('items', data)
for i in range(len(data)):
for j in range(i+1):
matrix[i, j] = dist(data[i], data[j])
return matrix
import orange, time
def repTime(msg):
#print "%s: %s" % (time.asctime(), msg)
pass
def callback(f, o):
print int(round(100*f)),
repTime("Loading data")
data = orange.ExampleTable("iris")
repTime("Computing distances")
matrix = orange.SymMatrix(len(data))
matrix.setattr("objects", data)
distance = orange.ExamplesDistanceConstructor_Euclidean(data)
for i1, ex1 in enumerate(data):
for i2 in range(i1+1, len(data)):
matrix[i1, i2] = distance(ex1, data[i2])
repTime("Hierarchical clustering (single linkage)")
clustering = orange.HierarchicalClustering()
clustering.linkage = clustering.Average
clustering.overwriteMatrix = 1
root = clustering(matrix)
repTime("Done.")
def prune(cluster, togo):
if cluster.branches:
import orange, orngMDS, math
data=orange.ExampleTable("../datasets/iris.tab")
dist = orange.ExamplesDistanceConstructor_Euclidean(data)
matrix = orange.SymMatrix(len(data))
for i in range(len(data)):
for j in range(i+1):
matrix[i, j] = dist(data[i], data[j])
mds=orngMDS.MDS(matrix)
#mds.Torgerson()
mds.getStress(orngMDS.KruskalStress)
i=0
while 100>i:
i+=1
oldStress=mds.avgStress
for j in range(10): mds.SMACOFstep()
mds.getStress(orngMDS.KruskalStress)
if oldStress*1e-3 > math.fabs(oldStress-mds.avgStress):
break;
import orange
m = orange.SymMatrix(4)
for i in range(4):
for j in range(i+1):
m[i, j] = (i+1)*(j+1)
print m
print
m.matrixType = m.Upper
print m
print
m.matrixType = m.UpperFilled
print m
print
def computeMatrix(self):
if not self.data:
return
data = self.data
dist = self.metrics[self.Metrics][1](data)
self.matrix = orange.SymMatrix(len(data))
self.matrix.setattr('items', data)
for i in range(len(data)):
for j in range(i+1):
self.matrix[i, j] = dist(data[i], data[j])
self.send("Distance Matrix", self.matrix)