Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Description: Builds regression models from data and outputs predictions for first five instances
# Category: modelling
# Uses: housing
# Classes: MakeRandomIndices2, MajorityLearner, orngTree.TreeLearner, orange.kNNLearner
# Referenced: regression.htm
import orange, orngTree, orngTest, orngStat
data = orange.ExampleTable("housing.tab")
selection = orange.MakeRandomIndices2(data, 0.5)
train_data = data.select(selection, 0)
test_data = data.select(selection, 1)
maj = orange.MajorityLearner(train_data)
maj.name = "default"
rt = orngTree.TreeLearner(train_data, measure="retis", mForPruning=2, minExamples=20)
rt.name = "reg. tree"
k = 5
knn = orange.kNNLearner(train_data, k=k)
knn.name = "k-NN (k=%i)" % k
regressors = [maj, rt, knn]
print "\n%10s " % "original",
self.changedFlag = False
##############################################################################
# Test the widget, run from DOS prompt
if __name__=="__main__":
a = QApplication(sys.argv)
ow = OWPredictions()
ow.show()
import orngTree
dataset = orange.ExampleTable('../../doc/datasets/iris.tab')
# dataset = orange.ExampleTable('../../doc/datasets/auto-mpg.tab')
ind = orange.MakeRandomIndices2(p0=0.5)(dataset)
data = dataset.select(ind, 0)
test = dataset.select(ind, 1)
testnoclass = orange.ExampleTable(orange.Domain(test.domain.attributes, False), test)
tree = orngTree.TreeLearner(data)
tree.name = "tree"
maj = orange.MajorityLearner(data)
maj.name = "maj"
knn = orange.kNNLearner(data, k = 10)
knn.name = "knn"
# ow.setData(test)
#
# ow.setPredictor(maj, 1)
def filterSmilesVariables(self, data):
candidates=data.domain.variables+data.domain.getmetas().values()
candidates=filter(lambda v:v.varType==orange.VarTypes.Discrete or v.varType==orange.VarTypes.String, candidates)
if len(data)>20:
data=data.select(orange.MakeRandomIndices2(data, 20))
vars=[]
if localOpenEye:
isValidSmiles = lambda s: OEParseSmiles(OEGraphMol(), s)
else:
from openbabel import OBConversion, OBMol
loader = OBConversion()
loader.SetInAndOutFormats("smi", "smi")
isValidSmiles = lambda s: loader.ReadString(OBMol(), s)
import os
tmpFd1=os.dup(1)
tmpFd2=os.dup(2)
fd=os.open(os.devnull, os.O_APPEND)
## os.close(1)
os.dup2(fd, 1)
os.dup2(fd, 2)
# Description: Read 'adult' data set and select 3% of instances (use stratified sampling)
# Category: preprocessing
# Uses: adult.tab
# Classes: ExampleTable, MakeRandomIndices2
# Referenced: basic_exploration.htm
import orange
data = orange.ExampleTable("../../datasets/adult_sample")
selection = orange.MakeRandomIndices2(data, 0.03)
sample = data.select(selection, 0)
sample.save("adult_sample.tab")
# Description: Read 'adult' data set and select 3% of instances (use stratified sampling)
# Category: preprocessing
# Uses: adult.tab
# Classes: ExampleTable, MakeRandomIndices2
# Referenced: basic_exploration.htm
import orange
data = orange.ExampleTable("adult_sample.tab")
selection = orange.MakeRandomIndices2(data, 0.03)
sample = data.select(selection, 0)
sample.save("adult_sample.tab")
# Description: Discretize the test set based on discretization of the training set.
# Category: preprocessing
# Uses: iris
# Classes: Preprocessor_discretize, EntropyDiscretization
# Referenced: o_categorization.htm
import orange
data = orange.ExampleTable("iris")
#split the data to learn and test set
ind = orange.MakeRandomIndices2(data, p0=6)
learn = data.select(ind, 0)
test = data.select(ind, 1)
# discretize learning set, then use its new domain
# to discretize the test set
learnD = orange.Preprocessor_discretize(data, method=orange.EntropyDiscretization())
testD = orange.ExampleTable(learnD.domain, test)
print "Test set, original:"
for i in range(3):
print test[i]
print "Test set, discretized:"
for i in range(3):
print testD[i]
def distanceMatrix(data):
dist = orange.ExamplesDistanceConstructor_Euclidean(data)
matrix = orange.SymMatrix(len(data))
matrix.setattr('items', data)
for i in range(len(data)):
for j in range(i+1):
matrix[i, j] = dist(data[i], data[j])
return matrix
import orange
a = QApplication(sys.argv)
ow = OWDistanceMap()
ow.show()
data = orange.ExampleTable(r'../../doc/datasets/iris.tab')
data = data.select(orange.MakeRandomIndices2(p0=20)(data), 0)
for d in data:
d.name = str(d["sepal length"])
matrix = distanceMatrix(data)
ow.setMatrix(matrix)
a.exec_()
ow.saveSettings()