How to use the nimare.references function in NiMARE

To help you get started, we’ve selected a few NiMARE examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github neurostuff / NiMARE / nimare / meta / cbma / model.py View on Github external
References
    ----------
    .. [1] Kang, Jian, et al. "Meta analysis of functional neuroimaging data
        via Bayesian spatial point processes." Journal of the American
        Statistical Association 106.493 (2011): 124-134.
        https://doi.org/10.1198/jasa.2011.ap09735
    """
    def __init__(self):
        pass

    def _fit(self, dataset):
        pass


@due.dcite(references.HPGRF, description='Introduces the HPGRF model.')
class HPGRF(CBMAEstimator):
    """
    Hierarchical Poisson/Gamma random field model [1]_.

    Warnings
    --------
    This method is not yet implemented.

    References
    ----------
    .. [1] Kang, Jian, et al. "A Bayesian hierarchical spatial point process
        model for multi-type neuroimaging meta-analysis." The annals of applied
        statistics 8.3 (2014): 1800.
    """
    def __init__(self):
        pass
github neurostuff / NiMARE / nimare / meta / cbma / utils.py View on Github external
@due.dcite(references.PEAKS2MAPS,
           description='Transforms coordinates of peaks to unthresholded maps using a deep '
                       'convolutional neural net.')
def peaks2maps(contrasts_coordinates, skip_out_of_bounds=True,
               tf_verbosity_level=None):
    """
    Generate modeled activation (MA) maps using depp ConvNet model peaks2maps

    Parameters
    ----------
    contrasts_coordinates : list of lists that are len == 3
        List of contrasts and their coordinates
    skip_out_of_bounds : aboolean, optional
        Remove coordinates outside of the bounding box of the peaks2maps model
    tf_verbosity_level : int
        Tensorflow verbosity logging level
github neurostuff / NiMARE / nimare / annotate / vector / word2brain.py View on Github external
"""
GloVe model-based annotation.
"""
from ..base import AnnotationModel
from ...due import due
from ... import references


@due.dcite(references.WORD2BRAIN)
class Word2BrainModel(AnnotationModel):
    """
    Generate a Word2Brain vector model [1]_.

    Warnings
    --------
    This method is not yet implemented.

    References
    ----------
    .. [1] Nunes, Abraham. "word2brain." bioRxiv (2018): 299024.
        https://doi.org/10.1101/299024
    """
    def __init__(self, text_df, coordinates_df):
        pass
github neurostuff / NiMARE / nimare / workflows / cluster.py View on Github external
@due.dcite(references.META_CLUSTER,
           description='Introduces meta-analytic clustering analysis; '
                       'hierarchically clustering face paradigms.')
@due.dcite(references.META_CLUSTER2,
           description='Performs the specific meta-analytic clustering '
                       'approach implemented here.')
def meta_cluster_workflow(dataset_file, output_dir=None, output_prefix=None,
                          kernel='ALEKernel', coord=True, algorithm='kmeans',
                          clust_range=(2, 10)):
    """
    Perform a meta-analytic clustering analysis on a dataset file.

    Warnings
    --------
    This method is not yet implemented.
    """
    def VI(X, Y):
github neurostuff / NiMARE / nimare / decode / discrete.py View on Github external
@due.dcite(references.GCLDA_DECODING, description='Citation for GCLDA decoding.')
def gclda_decode_roi(model, roi, topic_priors=None, prior_weight=1.):
    r"""
    Perform image-to-text decoding for discrete image inputs (e.g., regions
    of interest, significant clusters) according to the method described in
    [1]_.

    Parameters
    ----------
    model : :obj:`nimare.annotate.topic.GCLDAModel`
        Model object needed for decoding.
    roi : :obj:`nibabel.nifti1.Nifti1Image` or :obj:`str`
        Binary image to decode into text. If string, path to a file with
        the binary image.
    topic_priors : :obj:`numpy.ndarray` of :obj:`float`, optional
        A 1d array of size (n_topics) with values for topic weighting.
        If None, no weighting is done. Default is None.
github neurostuff / NiMARE / nimare / meta / cbma / ale.py View on Github external
import nibabel as nib
from scipy import ndimage
from nilearn.masking import apply_mask, unmask

from .kernel import ALEKernel, KernelTransformer
from ...results import MetaResult
from .base import CBMAEstimator
from ...due import due
from ... import references
from ...stats import null_to_p, p_to_z
from ...utils import round2

LGR = logging.getLogger(__name__)


@due.dcite(references.ALE1, description='Introduces ALE.')
@due.dcite(references.ALE2,
           description='Modifies ALE algorithm to eliminate within-experiment '
                       'effects and generate MA maps based on subject group '
                       'instead of experiment.')
@due.dcite(references.ALE3,
           description='Modifies ALE algorithm to allow FWE correction and to '
                       'more quickly and accurately generate the null '
                       'distribution for significance testing.')
class ALE(CBMAEstimator):
    r"""
    Activation likelihood estimation

    Parameters
    ----------
    kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional
        Kernel with which to convolve coordinates from dataset. Default is
github neurostuff / NiMARE / nimare / stats.py View on Github external
@due.dcite(references.T2Z_IMPLEMENTATION,
           description='Python implementation of T-to-Z transform.')
def t_to_z(t_values, dof):
    """
    From Vanessa Sochat's TtoZ package.
    """
    # Select just the nonzero voxels
    nonzero = t_values[t_values != 0]

    # We will store our results here
    z_values = np.zeros(len(nonzero))

    # Select values less than or == 0, and greater than zero
    c = np.zeros(len(nonzero))
    k1 = (nonzero <= c)
    k2 = (nonzero > c)
github neurostuff / NiMARE / nimare / meta / cbma / mkda.py View on Github external
# Voxel-level FWE
        vfwe_map = apply_mask(of_map, self.mask)
        for i_vox, val in enumerate(vfwe_map):
            vfwe_map[i_vox] = -np.log(null_to_p(val, perm_max_values, 'upper'))
        vfwe_map[np.isinf(vfwe_map)] = -np.log(np.finfo(float).eps)
        vthresh_of_map = apply_mask(nib.Nifti1Image(vthresh_of_map,
                                                    of_map.affine),
                                    self.mask)
        images = {'vthresh': vthresh_of_map,
                  'logp_level-cluster': cfwe_map,
                  'logp_level-voxel': vfwe_map}
        return images


@due.dcite(references.MKDA, description='Introduces MKDA.')
class MKDAChi2(CBMAEstimator):
    r"""
    Multilevel kernel density analysis- Chi-square analysis [1]_.

    Parameters
    ----------
    prior : float, optional
        Uniform prior probability of each feature being active in a map in
        the absence of evidence from the map. Default: 0.5
    kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional
        Kernel with which to convolve coordinates from dataset. Default is
        MKDAKernel.
    **kwargs
        Keyword arguments. Arguments for the kernel_estimator can be assigned
        here, with the prefix '\kernel__' in the variable name.
github neurostuff / NiMARE / nimare / parcellate / mamp.py View on Github external
"""
Meta-analytic activation modeling-based parcellation (MAMP).
"""
import numpy as np
import pandas as pd
from sklearn.cluster import k_means
import scipy.ndimage.measurements as meas
from nilearn.masking import apply_mask, unmask

from .base import Parcellator
from ..meta.cbma.kernel import ALEKernel
from ..due import due
from .. import references


@due.dcite(references.MAMP, description='Introduces the MAMP algorithm.')
class MAMP(Parcellator):
    """
    Meta-analytic activation modeling-based parcellation (MAMP) [1]_.

    Parameters
    ----------
    text : :obj:`list` of :obj:`str`
        List of texts to use for parcellation.
    mask : :obj:`str` or :obj:`nibabel.Nifti1.Nifti1Image`
        Mask file or image.

    Notes
    -----
    MAMP works similarly to CBP, but skips the step of performing a MACM for
    each voxel. Here are the steps:
        1.  Create an MA map for each study in the dataset.