Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
References
----------
.. [1] Kang, Jian, et al. "Meta analysis of functional neuroimaging data
via Bayesian spatial point processes." Journal of the American
Statistical Association 106.493 (2011): 124-134.
https://doi.org/10.1198/jasa.2011.ap09735
"""
def __init__(self):
pass
def _fit(self, dataset):
pass
@due.dcite(references.HPGRF, description='Introduces the HPGRF model.')
class HPGRF(CBMAEstimator):
"""
Hierarchical Poisson/Gamma random field model [1]_.
Warnings
--------
This method is not yet implemented.
References
----------
.. [1] Kang, Jian, et al. "A Bayesian hierarchical spatial point process
model for multi-type neuroimaging meta-analysis." The annals of applied
statistics 8.3 (2014): 1800.
"""
def __init__(self):
pass
References
----------
.. [1] Kang, Jian, et al. "A Bayesian hierarchical spatial point process
model for multi-type neuroimaging meta-analysis." The annals of applied
statistics 8.3 (2014): 1800.
"""
def __init__(self):
pass
def _fit(self, dataset):
pass
@due.dcite(references.SBLFR, description='Introduces the SBLFR model.')
class SBLFR(CBMAEstimator):
"""
Spatial Bayesian latent factor regression model [1]_.
Warnings
--------
This method is not yet implemented.
References
----------
.. [1] Montagna, Silvia, et al. "Spatial Bayesian latent factor regression
modeling of coordinate‐based meta‐analysis data." Biometrics 74.1
(2018): 342-353. https://doi.org/10.1111/biom.12713
"""
def __init__(self):
pass
References
----------
.. [1] Montagna, Silvia, et al. "Spatial Bayesian latent factor regression
modeling of coordinate‐based meta‐analysis data." Biometrics 74.1
(2018): 342-353. https://doi.org/10.1111/biom.12713
"""
def __init__(self):
pass
def _fit(self, dataset):
pass
@due.dcite(references.SBR, description='Introduces the SBR model.')
class SBR(CBMAEstimator):
"""
Spatial binary regression model [1]_.
Warnings
--------
This method is not yet implemented.
References
----------
.. [1] Yue, Yu Ryan, Martin A. Lindquist, and Ji Meng Loh. "Meta-analysis
of functional neuroimaging data using Bayesian nonparametric binary
regression." The Annals of Applied Statistics 6.2 (2012): 697-718.
https://doi.org/10.1214/11-AOAS523
"""
def __init__(self):
pass
from nilearn.masking import apply_mask, unmask
from statsmodels.sandbox.stats.multicomp import multipletests
from .kernel import MKDAKernel, KDAKernel
from ...results import MetaResult
from .base import CBMAEstimator
from .kernel import KernelTransformer
from ...stats import null_to_p, p_to_z, one_way, two_way
from ...due import due
from ... import references
LGR = logging.getLogger(__name__)
@due.dcite(references.MKDA, description='Introduces MKDA.')
class MKDADensity(CBMAEstimator):
r"""
Multilevel kernel density analysis- Density analysis [1]_.
Parameters
----------
kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional
Kernel with which to convolve coordinates from dataset. Default is
MKDAKernel.
**kwargs
Keyword arguments. Arguments for the kernel_estimator can be assigned
here, with the prefix '\kernel__' in the variable name.
Notes
-----
Available correction methods: :obj:`MKDADensity.correct_fwe_permutation`
grp2_z_map[grp2_voxel] = grp2_z_arr
# Fill in output map
diff_z_map = np.zeros(image1.shape[0])
diff_z_map[grp2_voxel] = -1 * grp2_z_map[grp2_voxel]
# could overwrite some values. not a problem.
diff_z_map[grp1_voxel] = grp1_z_map[grp1_voxel]
images = {'grp1-grp2_z': diff_z_map}
self.results = MetaResult(self, self.mask, maps=images)
@due.dcite(references.SCALE,
description='Introduces the specific co-activation likelihood '
'estimation (SCALE) algorithm.')
class SCALE(CBMAEstimator):
r"""
Specific coactivation likelihood estimation [1]_.
Parameters
----------
voxel_thresh : float, optional
Uncorrected voxel-level threshold. Default: 0.001
n_iters : int, optional
Number of iterations for correction. Default: 10000
n_cores : int, optional
Number of processes to use for meta-analysis. If -1, use all
available cores. Default: -1
ijk : :obj:`str` or (N x 3) array_like
Tab-delimited file of coordinates from database or numpy array with ijk
coordinates. Voxels are rows and i, j, k (meaning matrix-space) values
are the three columnns.
"""
Model-based coordinate-based meta-analysis estimators
"""
from .base import CBMAEstimator
from ...due import due
from ... import references
@due.dcite(references.BHICP, description='Introduces the BHICP model.')
class BHICP(CBMAEstimator):
"""
Bayesian hierarchical cluster process model [1]_.
Warnings
--------
This method is not yet implemented.
References
----------
.. [1] Kang, Jian, et al. "Meta analysis of functional neuroimaging data
via Bayesian spatial point processes." Journal of the American
Statistical Association 106.493 (2011): 124-134.
https://doi.org/10.1198/jasa.2011.ap09735
"""
def __init__(self):
pass
z_fwe_values = p_to_z(p_fwe_values, tail='one')
logp_vfwe_values = -np.log(p_fwe_values)
logp_vfwe_values[np.isinf(logp_vfwe_values)] = -np.log(np.finfo(float).eps)
# Write out unthresholded value images
images = {
'z_vthresh': vthresh_z_values,
'logp_level-voxel': logp_vfwe_values,
'z_level-voxel': z_fwe_values,
'logp_level-cluster': logp_cfwe_map,
}
return images
class ALESubtraction(CBMAEstimator):
"""
ALE subtraction analysis.
Parameters
----------
n_iters : :obj:`int`, optional
Default is 10000.
Notes
-----
This method was originally developed in [1]_ and refined in [2]_.
References
----------
.. [1] Laird, Angela R., et al. "ALE meta‐analysis: Controlling the
false discovery rate and performing statistical contrasts." Human
from ...stats import null_to_p, p_to_z
from ...utils import round2
LGR = logging.getLogger(__name__)
@due.dcite(references.ALE1, description='Introduces ALE.')
@due.dcite(references.ALE2,
description='Modifies ALE algorithm to eliminate within-experiment '
'effects and generate MA maps based on subject group '
'instead of experiment.')
@due.dcite(references.ALE3,
description='Modifies ALE algorithm to allow FWE correction and to '
'more quickly and accurately generate the null '
'distribution for significance testing.')
class ALE(CBMAEstimator):
r"""
Activation likelihood estimation
Parameters
----------
kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional
Kernel with which to convolve coordinates from dataset. Default is
ALEKernel.
**kwargs
Keyword arguments. Arguments for the kernel_estimator can be assigned
here, with the prefix '\kernel__' in the variable name.
Notes
-----
The ALE algorithm was originally developed in [1]_, then updated in [2]_
and [3]_.
# Voxel-level FWE
vfwe_map = apply_mask(of_map, self.mask)
for i_vox, val in enumerate(vfwe_map):
vfwe_map[i_vox] = -np.log(null_to_p(val, perm_max_values, 'upper'))
vfwe_map[np.isinf(vfwe_map)] = -np.log(np.finfo(float).eps)
vthresh_of_map = apply_mask(nib.Nifti1Image(vthresh_of_map,
of_map.affine),
self.mask)
images = {'vthresh': vthresh_of_map,
'logp_level-cluster': cfwe_map,
'logp_level-voxel': vfwe_map}
return images
@due.dcite(references.MKDA, description='Introduces MKDA.')
class MKDAChi2(CBMAEstimator):
r"""
Multilevel kernel density analysis- Chi-square analysis [1]_.
Parameters
----------
prior : float, optional
Uniform prior probability of each feature being active in a map in
the absence of evidence from the map. Default: 0.5
kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional
Kernel with which to convolve coordinates from dataset. Default is
MKDAKernel.
**kwargs
Keyword arguments. Arguments for the kernel_estimator can be assigned
here, with the prefix '\kernel__' in the variable name.
Notes
_, pFgA_p_FDR, _, _ = multipletests(pFgA_p_vals, alpha=alpha,
method='fdr_bh',
is_sorted=False,
returnsorted=False)
pFgA_z_FDR = p_to_z(pFgA_p_FDR, tail='two') * pFgA_sign
images = {
'consistency_z_FDR': pAgF_z_FDR,
'specificity_z_FDR': pFgA_z_FDR,
}
return images
@due.dcite(references.KDA1, description='Introduces the KDA algorithm.')
@due.dcite(references.KDA2, description='Also introduces the KDA algorithm.')
class KDA(CBMAEstimator):
r"""
Kernel density analysis.
Parameters
----------
kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional
Kernel with which to convolve coordinates from dataset. Default is
KDAKernel.
**kwargs
Keyword arguments. Arguments for the kernel_estimator can be assigned
here, with the prefix '\kernel__' in the variable name.
Notes
-----
Kernel density analysis was first introduced in [1]_ and [2]_.