Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
} = {},
): Feature {
// Handle input
const coordinates1 = getCoord(origin);
const longitude1 = degreesToRadians(coordinates1[0]);
const latitude1 = degreesToRadians(coordinates1[1]);
const bearingRad = degreesToRadians(bearing);
const radians = lengthToRadians(distance, options.units);
// Main
const latitude2 = Math.asin(Math.sin(latitude1) * Math.cos(radians) +
Math.cos(latitude1) * Math.sin(radians) * Math.cos(bearingRad));
const longitude2 = longitude1 + Math.atan2(Math.sin(bearingRad) * Math.sin(radians) * Math.cos(latitude1),
Math.cos(radians) - Math.sin(latitude1) * Math.sin(latitude2));
const lng = radiansToDegrees(longitude2);
const lat = radiansToDegrees(latitude2);
return point([lng, lat], options.properties);
}
} = {}): number {
// Reverse calculation
if (options.final === true) { return calculateFinalBearing(start, end); }
const coordinates1 = getCoord(start);
const coordinates2 = getCoord(end);
const lon1 = degreesToRadians(coordinates1[0]);
const lon2 = degreesToRadians(coordinates2[0]);
const lat1 = degreesToRadians(coordinates1[1]);
const lat2 = degreesToRadians(coordinates2[1]);
const a = Math.sin(lon2 - lon1) * Math.cos(lat2);
const b = Math.cos(lat1) * Math.sin(lat2) -
Math.sin(lat1) * Math.cos(lat2) * Math.cos(lon2 - lon1);
return radiansToDegrees(Math.atan2(a, b));
}
var properties = options.properties;
// Handle input
var coordinates1 = invariant.getCoord(origin);
var longitude1 = helpers.degreesToRadians(coordinates1[0]);
var latitude1 = helpers.degreesToRadians(coordinates1[1]);
var bearing_rad = helpers.degreesToRadians(bearing);
var radians = helpers.lengthToRadians(distance, units);
// Main
var latitude2 = Math.asin(Math.sin(latitude1) * Math.cos(radians) +
Math.cos(latitude1) * Math.sin(radians) * Math.cos(bearing_rad));
var longitude2 = longitude1 + Math.atan2(Math.sin(bearing_rad) * Math.sin(radians) * Math.cos(latitude1),
Math.cos(radians) - Math.sin(latitude1) * Math.sin(latitude2));
var lng = helpers.radiansToDegrees(longitude2);
var lat = helpers.radiansToDegrees(latitude2);
return helpers.point([lng, lat], properties);
}
// φ => phi
// Δλ => deltaLambda
// Δψ => deltaPsi
// θ => theta
const phi1 = degreesToRadians(from[1]);
const phi2 = degreesToRadians(to[1]);
let deltaLambda = degreesToRadians((to[0] - from[0]));
// if deltaLambdaon over 180° take shorter rhumb line across the anti-meridian:
if (deltaLambda > Math.PI) { deltaLambda -= 2 * Math.PI; }
if (deltaLambda < -Math.PI) { deltaLambda += 2 * Math.PI; }
const deltaPsi = Math.log(Math.tan(phi2 / 2 + Math.PI / 4) / Math.tan(phi1 / 2 + Math.PI / 4));
const theta = Math.atan2(deltaLambda, deltaPsi);
return (radiansToDegrees(theta) + 360) % 360;
}
var units = options.units;
var properties = options.properties;
// Handle input
var coordinates1 = invariant.getCoord(origin);
var longitude1 = helpers.degreesToRadians(coordinates1[0]);
var latitude1 = helpers.degreesToRadians(coordinates1[1]);
var bearing_rad = helpers.degreesToRadians(bearing);
var radians = helpers.lengthToRadians(distance, units);
// Main
var latitude2 = Math.asin(Math.sin(latitude1) * Math.cos(radians) +
Math.cos(latitude1) * Math.sin(radians) * Math.cos(bearing_rad));
var longitude2 = longitude1 + Math.atan2(Math.sin(bearing_rad) * Math.sin(radians) * Math.cos(latitude1),
Math.cos(radians) - Math.sin(latitude1) * Math.sin(latitude2));
var lng = helpers.radiansToDegrees(longitude2);
var lat = helpers.radiansToDegrees(latitude2);
return helpers.point([lng, lat], properties);
}
properties?: P,
} = {},
): Feature {
// Handle input
const coordinates1 = getCoord(origin);
const longitude1 = degreesToRadians(coordinates1[0]);
const latitude1 = degreesToRadians(coordinates1[1]);
const bearingRad = degreesToRadians(bearing);
const radians = lengthToRadians(distance, options.units);
// Main
const latitude2 = Math.asin(Math.sin(latitude1) * Math.cos(radians) +
Math.cos(latitude1) * Math.sin(radians) * Math.cos(bearingRad));
const longitude2 = longitude1 + Math.atan2(Math.sin(bearingRad) * Math.sin(radians) * Math.cos(latitude1),
Math.cos(radians) - Math.sin(latitude1) * Math.sin(latitude2));
const lng = radiansToDegrees(longitude2);
const lat = radiansToDegrees(latitude2);
return point([lng, lat], options.properties);
}
// sigmaY = sqrt((1 / n - 2) * sum((((x - X) * sin(theta)) - ((y - Y) * cos(theta)))^2))
var sigmaXsum = 0;
var sigmaYsum = 0;
featureEach(points, function(point){
xDeviation = getCoords(point)[0] - getCoords(theMeanCenter)[0];
yDeviation = getCoords(point)[1] - getCoords(theMeanCenter)[1];
sigmaXsum += Math.pow((xDeviation * Math.cos(theta)) - (yDeviation * Math.sin(theta)), 2);
sigmaYsum += Math.pow((xDeviation * Math.sin(theta)) - (yDeviation * Math.cos(theta)), 2);
});
var sigmaX = Math.sqrt(sigmaXsum * (1 / (n)));
var sigmaY = Math.sqrt(sigmaYsum * (1 / (n)));
sigmaX = radiansToLength(degreesToRadians(sigmaX));
sigmaY = radiansToLength(degreesToRadians(sigmaY));
theta = radiansToDegrees(theta);
var semiMajorAxis, semiMinorAxis;
if (sigmaX > sigmaY) {
semiMajorAxis = sigmaX;
semiMinorAxis = sigmaY;
} else {
semiMinorAxis = sigmaX;
semiMajorAxis = sigmaY;
theta = theta - 90;
}
var theEllipse = ellipse(meanCenter, semiMajorAxis, semiMinorAxis, {angle: theta, steps: steps, properties: properties});
var eccentricity = (Math.sqrt(Math.pow(semiMajorAxis, 2) - Math.pow(semiMinorAxis, 2))) / semiMajorAxis;
var pointsWithinEllipse = pointsWithinPolygon(points, turf.featureCollection([theEllipse]));
var standardDeviationalEllipseProperties = {
meanCenterCoordinates: getCoord(theMeanCenter),
semiMajorAxis: semiMajorAxis,