How to use @tensorflow/tfjs-layers - 10 common examples

To help you get started, we’ve selected a few @tensorflow/tfjs-layers examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github tensorflow / tfjs / tfjs / integration_tests / models / benchmarks.ts View on Github external
}
    console.log(`Boolean flag log = ${log}`);

    const taskType = 'model';
    let environmentInfo: EnvironmentInfo;
    if (isNodeJS) {
      environmentInfo = common.getNodeEnvironmentInfo(tfn);
    } else {
      environmentInfo = common.getBrowserEnvironmentInfo();
    }
    const versionSet: VersionSet = isNodeJS ? {versions: tfn.version} : {
      versions: {
        'tfjs-converter': tfconverter.version_converter,
        'tfjs-core': tfc.version_core,
        'tfjs-data': tfd.version_data,
        'tfjs-layers': tfl.version_layers
      }
    };

    let suiteLog: common.SuiteLog;
    if (isNodeJS) {
      // tslint:disable-next-line:no-require-imports
      const fs = require('fs');
      suiteLog = JSON.parse(fs.readFileSync(BENCHMARKS_JSON_PATH, 'utf-8'));
    } else {
      suiteLog =
          await (await fetch(BENCHMARKS_JSON_URL)).json() as common.SuiteLog;
    }
    const pyEnvironmentInfo = suiteLog.environmentInfo;
    const pyEnvironmentId =
        log ? await addEnvironmentInfoToFirestore(pyEnvironmentInfo) : null;
    environmentInfo.systemInfo = pyEnvironmentInfo.systemInfo;
github tensorflow / tfjs / integration_tests / benchmarks / index.js View on Github external
async function runBenchmark(artifactsDir, modelName, config) {
  const modelPath = artifactsDir + modelName + '/';
  console.log('Loading model "' + modelName + '" and benchmark data...');
  // Note: currently we load only the topology. The weight values don't matter
  // for the benchmarks and are initialized according to the initializer.
  const modelJSON = await (await fetch(modelPath + 'model.json')).json();
  const model = await tfl.models.modelFromJSON(modelJSON['modelTopology']);
  console.log('Done loading model "' + modelName + '" and benchmark data.');

  const benchmarkData = await (await fetch(modelPath + 'data.json')).json();

  const lossMap = {
    mean_squared_error: 'meanSquaredError',
    categorical_crossentropy: 'categoricalCrossentropy',
  };
  // TODO(cais): Maybe TF.js Layers should tolerate these Python-style names
  // for losses.

  const [xs, ys] = getRandomInputsAndOutputs(model, benchmarkData.batch_size);

  if (benchmarkData.train_epochs > 0) {
    const optimizer =
        optimizerMap[benchmarkData.optimizer] || benchmarkData.optimizer;
github tensorflow / tfjs / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportDepthwiseCNNModel(exportPath) {
  const model = tfl.sequential();

  // Cover depthwise 2D convoluational layer.
  model.add(tfl.layers.depthwiseConv2d({
    depthMultiplier: 2,
    kernelSize: [3, 3],
    strides: [2, 2],
    inputShape: [40, 40, 3],
    padding: 'valid',
  }));
  model.add(tfl.layers.batchNormalization({}));
  model.add(tfl.layers.activation({activation: 'relu'}));
  model.add(tfl.layers.dropout({rate: 0.5}));
  model.add(tfl.layers.maxPooling2d({poolSize: 2}));
  model.add(tfl.layers.flatten({}));
  model.add(tfl.layers.dense({units: 100, activation: 'softmax'}));
github tensorflow / tfjs / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportCNNModel(exportPath) {
  const model = tfl.sequential();

  // Cover separable and non-separable convoluational layers.
  const inputShape = [40, 40, 3];
  model.add(tfl.layers.conv2d({
    filters: 32,
    kernelSize: [3, 3],
    strides: [2, 2],
    inputShape,
    padding: 'valid',
  }));
  model.add(tfl.layers.batchNormalization({}));
  model.add(tfl.layers.activation({activation: 'relu'}));
  model.add(tfl.layers.dropout({rate: 0.5}));
  model.add(tfl.layers.maxPooling2d({poolSize: 2}));
  model.add(tfl.layers.separableConv2d({
    filters: 32,
github tensorflow / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportCNNModel(exportPath) {
  const model = tfl.sequential();

  // Cover separable and non-separable convoluational layers.
  const inputShape = [40, 40, 3];
  model.add(tfl.layers.conv2d({
    filters: 32,
    kernelSize: [3, 3],
    strides: [2, 2],
    inputShape,
    padding: 'valid',
  }));
  model.add(tfl.layers.batchNormalization({}));
  model.add(tfl.layers.activation({activation: 'relu'}));
  model.add(tfl.layers.dropout({rate: 0.5}));
  model.add(tfl.layers.maxPooling2d({poolSize: 2}));
  model.add(tfl.layers.separableConv2d({
    filters: 32,
github tensorflow / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportMLPModel(exportPath) {
  const model = tfl.sequential();
  // Test both activations encapsulated in other layers and as standalone
  // layers.
  model.add(
      tfl.layers.dense({units: 100, inputShape: [200], activation: 'relu'}));
  model.add(tfl.layers.dense({units: 50, activation: 'elu'}));
  model.add(tfl.layers.dense({units: 24}));
  model.add(tfl.layers.activation({activation: 'elu'}));
  model.add(tfl.layers.dense({units: 8, activation: 'softmax'}));

  await saveModelAndRandomInputsAndOutputs(model, exportPath);
}
github tensorflow / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportBidirectionalLSTMModel(exportPath) {
  const model = tfl.sequential();
  const inputDim = 100;
  model.add(tfl.layers.embedding({inputDim, outputDim: 20, inputShape: [10]}));
  // TODO(cais): Investigate why the `tfl.layers.RNN` typing doesn't work.
  const lstm = tfl.layers.lstm({units: 4, goBackwards: true});
  model.add(tfl.layers.bidirectional({layer: lstm, mergeMode: 'concat'}));

  await saveModelAndRandomInputsAndOutputs(model, exportPath, inputDim);
}
github tensorflow / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportDepthwiseCNNModel(exportPath) {
  const model = tfl.sequential();

  // Cover depthwise 2D convoluational layer.
  model.add(tfl.layers.depthwiseConv2d({
    depthMultiplier: 2,
    kernelSize: [3, 3],
    strides: [2, 2],
    inputShape: [40, 40, 3],
    padding: 'valid',
  }));
  model.add(tfl.layers.batchNormalization({}));
  model.add(tfl.layers.activation({activation: 'relu'}));
  model.add(tfl.layers.dropout({rate: 0.5}));
  model.add(tfl.layers.maxPooling2d({poolSize: 2}));
  model.add(tfl.layers.flatten({}));
  model.add(tfl.layers.dense({units: 100, activation: 'softmax'}));
github tensorflow / tfjs / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportMLPModel(exportPath) {
  const model = tfl.sequential();
  // Test both activations encapsulated in other layers and as standalone
  // layers.
  model.add(
      tfl.layers.dense({units: 100, inputShape: [200], activation: 'relu'}));
  model.add(tfl.layers.dense({units: 50, activation: 'elu'}));
  model.add(tfl.layers.dense({units: 24}));
  model.add(tfl.layers.activation({activation: 'elu'}));
  model.add(tfl.layers.dense({units: 8, activation: 'softmax'}));

  await saveModelAndRandomInputsAndOutputs(model, exportPath);
}
github tensorflow / tfjs-layers / integration_tests / tfjs2keras / tfjs_save.js View on Github external
async function exportMLPModel(exportPath) {
  const model = tfl.sequential();
  // Test both activations encapsulated in other layers and as standalone
  // layers.
  model.add(
      tfl.layers.dense({units: 100, inputShape: [200], activation: 'relu'}));
  model.add(tfl.layers.dense({units: 50, activation: 'elu'}));
  model.add(tfl.layers.dense({units: 24}));
  model.add(tfl.layers.activation({activation: 'elu'}));
  model.add(tfl.layers.dense({units: 8, activation: 'softmax'}));

  await saveModelAndRandomInputsAndOutputs(model, exportPath);
}