Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
async function exportMLPModel(exportPath) {
const model = tfl.sequential();
// Test both activations encapsulated in other layers and as standalone
// layers.
model.add(
tfl.layers.dense({units: 100, inputShape: [200], activation: 'relu'}));
model.add(tfl.layers.dense({units: 50, activation: 'elu'}));
model.add(tfl.layers.dense({units: 24}));
model.add(tfl.layers.activation({activation: 'elu'}));
model.add(tfl.layers.dense({units: 8, activation: 'softmax'}));
await saveModelAndRandomInputsAndOutputs(model, exportPath);
}
async function exportMLPModel(exportPath) {
const model = tfl.sequential();
// Test both activations encapsulated in other layers and as standalone
// layers.
model.add(
tfl.layers.dense({units: 100, inputShape: [200], activation: 'relu'}));
model.add(tfl.layers.dense({units: 50, activation: 'elu'}));
model.add(tfl.layers.dense({units: 24}));
model.add(tfl.layers.activation({activation: 'elu'}));
model.add(tfl.layers.dense({units: 8, activation: 'softmax'}));
await saveModelAndRandomInputsAndOutputs(model, exportPath);
}
async function exportCNNModel(exportPath) {
const model = tfl.sequential();
// Cover separable and non-separable convoluational layers.
const inputShape = [40, 40, 3];
model.add(tfl.layers.conv2d({
filters: 32,
kernelSize: [3, 3],
strides: [2, 2],
inputShape,
padding: 'valid',
}));
model.add(tfl.layers.batchNormalization({}));
model.add(tfl.layers.activation({activation: 'relu'}));
model.add(tfl.layers.dropout({rate: 0.5}));
model.add(tfl.layers.maxPooling2d({poolSize: 2}));
model.add(tfl.layers.separableConv2d({
filters: 32,
kernelSize: [4, 4],
strides: [3, 3],
}));
model.add(tfl.layers.batchNormalization({}));
model.add(tfl.layers.activation({activation: 'relu'}));
model.add(tfl.layers.dropout({rate: 0.5}));
model.add(tfl.layers.avgPooling2d({poolSize: [2, 2]}));
model.add(tfl.layers.flatten({}));
model.add(tfl.layers.dense({units: 100, activation: 'softmax'}));
await saveModelAndRandomInputsAndOutputs(model, exportPath);
}
async function exportCNNModel(exportPath) {
const model = tfl.sequential();
// Cover separable and non-separable convoluational layers.
const inputShape = [40, 40, 3];
model.add(tfl.layers.conv2d({
filters: 32,
kernelSize: [3, 3],
strides: [2, 2],
inputShape,
padding: 'valid',
}));
model.add(tfl.layers.batchNormalization({}));
model.add(tfl.layers.activation({activation: 'relu'}));
model.add(tfl.layers.dropout({rate: 0.5}));
model.add(tfl.layers.maxPooling2d({poolSize: 2}));
model.add(tfl.layers.separableConv2d({
filters: 32,
kernelSize: [4, 4],
strides: [3, 3],
}));
model.add(tfl.layers.batchNormalization({}));