How to use the wasabi.msg.text function in wasabi

To help you get started, we’ve selected a few wasabi examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github explosion / spaCy / spacy / cli / validate.py View on Github external
header = ("TYPE", "NAME", "MODEL", "VERSION", "")
        rows = []
        for name, data in model_pkgs.items():
            rows.append(get_model_row(current_compat, name, data, msg))
        for name, data in model_links.items():
            rows.append(get_model_row(current_compat, name, data, msg, "link"))
        msg.table(rows, header=header)
    else:
        msg.text("No models found in your current environment.", exits=0)
    if update_models:
        msg.divider("Install updates")
        msg.text("Use the following commands to update the model packages:")
        cmd = "python -m spacy download {}"
        print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n")
    if na_models:
        msg.text(
            "The following models are not available for spaCy "
            "v{}: {}".format(about.__version__, ", ".join(na_models))
        )
    if incompat_links:
        msg.text(
            "You may also want to overwrite the incompatible links using the "
            "`python -m spacy link` command with `--force`, or remove them "
            "from the data directory. "
            "Data path: {path}".format(path=path2str(get_data_path()))
        )
    if incompat_models or incompat_links:
        sys.exit(1)
github explosion / spaCy / spacy / cli / validate.py View on Github external
msg.divider("Installed models (spaCy v{})".format(about.__version__))
    msg.info("spaCy installation: {}".format(path2str(spacy_dir)))

    if model_links or model_pkgs:
        header = ("TYPE", "NAME", "MODEL", "VERSION", "")
        rows = []
        for name, data in model_pkgs.items():
            rows.append(get_model_row(current_compat, name, data, msg))
        for name, data in model_links.items():
            rows.append(get_model_row(current_compat, name, data, msg, "link"))
        msg.table(rows, header=header)
    else:
        msg.text("No models found in your current environment.", exits=0)
    if update_models:
        msg.divider("Install updates")
        msg.text("Use the following commands to update the model packages:")
        cmd = "python -m spacy download {}"
        print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n")
    if na_models:
        msg.text(
            "The following models are not available for spaCy "
            "v{}: {}".format(about.__version__, ", ".join(na_models))
        )
    if incompat_links:
        msg.text(
            "You may also want to overwrite the incompatible links using the "
            "`python -m spacy link` command with `--force`, or remove them "
            "from the data directory. "
            "Data path: {path}".format(path=path2str(get_data_path()))
        )
    if incompat_models or incompat_links:
        sys.exit(1)
github explosion / sense2vec / sense2vec / prodigy_recipes.py View on Github external
def eval_dataset(set_id):
        DB = connect()
        data = DB.get_dataset(set_id)
        accepted = [eg for eg in data if eg["answer"] == "accept" and eg.get("accept")]
        rejected = [eg for eg in data if eg["answer"] == "reject"]
        ignored = [eg for eg in data if eg["answer"] == "ignore"]
        if not accepted and not rejected:
            msg.warn("No annotations collected", exits=1)
        total_count = 0
        agree_count = 0
        for eg in accepted:
            total_count += len(eg.get("options", []))
            agree_count += len(eg.get("accept", []))
        msg.info(f"Evaluating data from '{set_id}'")
        msg.text(f"You rejected {len(rejected)} and ignored {len(ignored)} pair(s)")
        pc = agree_count / total_count
        text = f"You agreed {agree_count} / {total_count} times ({pc:.0%})"
        if pc > 0.5:
            msg.good(text)
        else:
            msg.fail(text)
github explosion / sense2vec / sense2vec / prodigy_recipes.py View on Github external
if not accepted and not rejected:
            msg.warn("No annotations collected", exits=1)
        counts = Counter()
        for eg in accepted:
            for model_id in eg["accept"]:
                counts[model_id] += 1
        preference, _ = counts.most_common(1)[0]
        ratio = f"{counts[preference]} / {sum(counts.values()) - counts[preference]}"
        msg.info(f"Evaluating data from '{set_id}'")
        msg.text(f"You rejected {len(rejected)} and ignored {len(ignored)} pair(s)")
        if counts["A"] == counts["B"]:
            msg.warn(f"No preference ({ratio})")
        else:
            pc = counts[preference] / sum(counts.values())
            msg.good(f"You preferred vectors {preference} with {ratio} ({pc:.0%})")
            msg.text(mapping[preference])
github explosion / sense2vec / sense2vec / prodigy_recipes.py View on Github external
choice = eg["accept"][0]
            score_choice = [o["score"] for o in eg["options"] if o["id"] == choice][0]
            score_other = [o["score"] for o in eg["options"] if o["id"] != choice][0]
            if score_choice > score_other:
                agree_count += 1
            elif eg["confidence"] > high_conf:
                disagree_high_conf += 1
        pc = agree_count / (len(accepted) + len(rejected))
        text = f"You agreed {agree_count} / {len(data)} times ({pc:.0%})"
        msg.info(f"Evaluating data from '{set_id}'")
        if pc > 0.5:
            msg.good(text)
        else:
            msg.fail(text)
        msg.text(f"You disagreed on {disagree_high_conf} high confidence scores")
        msg.text(f"You rejected {len(rejected)} suggestions as not similar")
github explosion / spaCy / spacy / cli / train.py View on Github external
corpus = GoldCorpus(train_path, dev_path, limit=n_examples)
    n_train_words = corpus.count_train()

    if base_model:
        # Start with an existing model, use default optimizer
        optimizer = create_default_optimizer(Model.ops)
    else:
        # Start with a blank model, call begin_training
        optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)

    nlp._optimizer = None

    # Load in pretrained weights
    if init_tok2vec is not None:
        components = _load_pretrained_tok2vec(nlp, init_tok2vec)
        msg.text("Loaded pretrained tok2vec for: {}".format(components))

    # Verify textcat config
    if "textcat" in pipeline:
        textcat_labels = nlp.get_pipe("textcat").cfg["labels"]
        if textcat_positive_label and textcat_positive_label not in textcat_labels:
            msg.fail(
                "The textcat_positive_label (tpl) '{}' does not match any "
                "label in the training data.".format(textcat_positive_label),
                exits=1,
            )
        if textcat_positive_label and len(textcat_labels) != 2:
            msg.fail(
                "A textcat_positive_label (tpl) '{}' was provided for training "
                "data that does not appear to be a binary classification "
                "problem with two labels.".format(textcat_positive_label),
                exits=1,
github justindujardin / mathy / libraries / mathy_python / mathy / models.py View on Github external
)
    Path.mkdir(package_path, parents=True, exist_ok=True)
    for f in REQUIRED_MODEL_FILES:
        file_name: Path = input_path / f
        if not file_name.exists():
            msg.fail(
                f"Input path '{input_path}' is missing a required file: '{f}'",
                "This file is required to build your package.",
                exits=1,
            )
        shutil.copyfile(file_name, main_path / f)
    create_file(output_path / "model.config.json", srsly.json_dumps(meta, indent=2))
    create_file(output_path / "setup.py", TEMPLATE_SETUP)
    create_file(package_path / "__init__.py", TEMPLATE_INIT)
    msg.good("Successfully created package '{}'".format(package_path), main_path)
    msg.text("To build the package, run `python setup.py sdist` in this directory.")
    return str(package_path)
github explosion / spaCy / spacy / cli / validate.py View on Github external
update_models = [m for m in incompat_models if m in current_compat]
    spacy_dir = Path(__file__).parent.parent

    msg.divider("Installed models (spaCy v{})".format(about.__version__))
    msg.info("spaCy installation: {}".format(path2str(spacy_dir)))

    if model_links or model_pkgs:
        header = ("TYPE", "NAME", "MODEL", "VERSION", "")
        rows = []
        for name, data in model_pkgs.items():
            rows.append(get_model_row(current_compat, name, data, msg))
        for name, data in model_links.items():
            rows.append(get_model_row(current_compat, name, data, msg, "link"))
        msg.table(rows, header=header)
    else:
        msg.text("No models found in your current environment.", exits=0)
    if update_models:
        msg.divider("Install updates")
        msg.text("Use the following commands to update the model packages:")
        cmd = "python -m spacy download {}"
        print("\n".join([cmd.format(pkg) for pkg in update_models]) + "\n")
    if na_models:
        msg.text(
            "The following models are not available for spaCy "
            "v{}: {}".format(about.__version__, ", ".join(na_models))
        )
    if incompat_links:
        msg.text(
            "You may also want to overwrite the incompatible links using the "
            "`python -m spacy link` command with `--force`, or remove them "
            "from the data directory. "
            "Data path: {path}".format(path=path2str(get_data_path()))
github explosion / sense2vec / scripts / 01_parse.py View on Github external
Step 1: Parse raw text with spaCy

    Expects an input file with one sentence per line and will output a .spacy
    file of the parsed collection of Doc objects (DocBin).
    """
    input_path = Path(in_file)
    output_path = Path(out_dir)
    if not input_path.exists():
        msg.fail("Can't find input file", in_file, exits=1)
    if not output_path.exists():
        output_path.mkdir(parents=True)
        msg.good(f"Created output directory {out_dir}")
    nlp = spacy.load(spacy_model)
    msg.info(f"Using spaCy model {spacy_model}")
    doc_bin = DocBin(attrs=["POS", "TAG", "DEP", "ENT_TYPE", "ENT_IOB"])
    msg.text("Preprocessing text...")
    count = 0
    batch_num = 0
    with input_path.open("r", encoding="utf8") as texts:
        docs = nlp.pipe(texts, n_process=n_process)
        for doc in tqdm.tqdm(docs, desc="Docs", unit=""):
            if count < max_docs:
                doc_bin.add(doc)
                count += 1
            else:
                batch_num += 1
                count = 0
                msg.good(f"Processed {len(doc_bin)} docs")
                doc_bin_bytes = doc_bin.to_bytes()
                output_file = output_path / f"{input_path.stem}-{batch_num}.spacy"
                with output_file.open("wb") as f:
                    f.write(doc_bin_bytes)