How to use the vowpalwabbit.pyvw.SearchTask function in vowpalwabbit

To help you get started, we’ve selected a few vowpalwabbit examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github VowpalWabbit / vowpal_wabbit / python / examples / test_search.py View on Github external
from __future__ import print_function

import sys
from vowpalwabbit import pyvw


class SequenceLabeler(pyvw.SearchTask):
    def __init__(self, vw, sch, num_actions):
        # you must must must initialize the parent class
        # this will automatically store self.sch <- sch, self.vw <- vw
        pyvw.SearchTask.__init__(self, vw, sch, num_actions)

        # you can test program options with sch.po_exists
        # and get their values with sch.po_get -> string and
        # sch.po_get_int -> int
        if sch.po_exists('search'):
            print('found --search')
            print('--search value =', sch.po_get('search'), ', type =', type(sch.po_get('search')))

        # set whatever options you want
        sch.set_options( sch.AUTO_HAMMING_LOSS | sch.AUTO_CONDITION_FEATURES )

    def _run(self, sentence):   # it's called _run to remind you that you shouldn't call it directly!
github VowpalWabbit / vowpal_wabbit / python / examples / test_search_ldf.py View on Github external
(NOUN, 'monster'),
                (VERB, 'ate'),
                (DET , 'a'),
                (ADJ , 'big'),
                (NOUN, 'sandwich')],
               [(DET , 'the'),
                (NOUN, 'sandwich'),
                (VERB, 'was'),
                (ADJ , 'tasty')],
               [(NOUN, 'it'),
                (VERB, 'ate'),
                (NOUN, 'it'),
                (ADJ , 'all')] ]


class SequenceLabeler(pyvw.SearchTask):
    def __init__(self, vw, sch, num_actions):
        # you must must must initialize the parent class
        # this will automatically store self.sch <- sch, self.vw <- vw
        pyvw.SearchTask.__init__(self, vw, sch, num_actions)

        # set whatever options you want
        sch.set_options( sch.AUTO_HAMMING_LOSS | sch.AUTO_CONDITION_FEATURES | sch.IS_LDF )

    def makeExample(self, word, p):
        ex = self.example({'w': [word + '_' + str(p)]}, labelType=self.vw.lCostSensitive)
        ex.set_label_string(str(p) + ':0')
        return ex

    def _run(self, sentence):   # it's called _run to remind you that you shouldn't call it directly!
        output = []
        for n in range(len(sentence)):
github VowpalWabbit / vowpal_wabbit / python / examples / xor.py View on Github external
from vowpalwabbit import pyvw

class LatentVariableClassifier(pyvw.SearchTask):
    def __init__(self, vw, sch, num_actions):
        pyvw.SearchTask.__init__(self, vw, sch, num_actions)
        sch.set_options( sch.AUTO_CONDITION_FEATURES )

    def _run(self, y_x):
        y,(x0,x1) = y_x

        ex = self.example({'x': [('x0',x0), ('x1',x1)]})
        h  = self.sch.predict(examples=ex, my_tag=1, oracle=None) * 2 - 3

        ex = self.example({'x': [('x0',x0), ('x1',x1), ('x0h',x0*h)]})
        p  = self.sch.predict(examples=ex, my_tag=2, oracle=y, condition=(1,'h'))

        self.sch.loss( 0. if p == y else 1. )
        return p
github VowpalWabbit / vowpal_wabbit / python / examples / covington.py View on Github external
'b': [wordM, dir + '_' + wordN], 
                                      'p': [wordN + '_' + wordM, dir + '_' + wordN + '_' + wordM],
                                      'd': [ str(m-n <= d) + '<=' + str(d) for d in [-8, -4, -2, -1, 1, 2, 4, 8] ] +
                                           [ str(m-n >= d) + '>=' + str(d) for d in [-8, -4, -2, -1, 1, 2, 4, 8] ] })
                pred = self.sch.predict(examples  = ex,
                                        my_tag    = (m+1)*N + n + 1,
                                        oracle    = isParent,
                                        condition = [ (max(0, (m  )*N + n + 1), 'p'),
                                                      (max(0, (m+1)*N + n    ), 'q') ])
                vw.finish_example([ex]) # must pass the example in as a list because search is a MultiEx reduction
                if pred == 2:
                    output[n] = m
                    break
        return output

class CovingtonDepParserLDF(pyvw.SearchTask):
    def __init__(self, vw, sch, num_actions):
        pyvw.SearchTask.__init__(self, vw, sch, num_actions)
        sch.set_options( sch.AUTO_HAMMING_LOSS | sch.IS_LDF | sch.AUTO_CONDITION_FEATURES )

    def makeExample(self, sentence, n, m):
        wordN = sentence[n][0]
        wordM = sentence[m][0] if m >= 0 else '*ROOT*'
        dir   = 'l' if m < n else 'r'
        ex = self.vw.example( { 'a': [wordN, dir + '_' + wordN],
                                'b': [wordM, dir + '_' + wordM],
                                'p': [wordN + '_' + wordM, dir + '_' + wordN + '_' + wordM],
                                'd': [ str(m-n <= d) + '<=' + str(d) for d in [-8, -4, -2, -1, 1, 2, 4, 8] ] +
                                     [ str(m-n >= d) + '>=' + str(d) for d in [-8, -4, -2, -1, 1, 2, 4, 8] ] },
                              labelType=self.vw.lCostSensitive)
        # the label string is (m+2):0. The :0 means cost zero (this is
        # irrelevant and could be any number). +2 ensures >= 1

vowpalwabbit

Vowpal Wabbit Python package

BSD-3-Clause
Latest version published 5 months ago

Package Health Score

83 / 100
Full package analysis

Similar packages