Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test():
builder = BTBulder(conditions, actions, goal_defs)
bt = builder.expand('finished')
#bt.draw('bt_doom_root.png')
vizdoom_path = os.path.dirname(vizdoom.__file__)
config = "../environments/oblige/oblige-map.cfg"
game_levels = DoomInstanceBt.get_game_levels(config)
print('Game levels: ', len(game_levels))
for i, [wad_file, map_id] in enumerate(game_levels):
print('Playing ''{}'', map{:02d}'.format(wad_file, map_id+1))
game = DoomInstanceBt(config,
vizdoom_path + "/freedoom2.wad",
skiprate=4,
visible=True,
actions=[],
id=0,
config_wad=wad_file,
map_id=map_id
)
#
import argparse
import os.path
from cuda import *
from aac import AdvantageActorCritic
from aac_lstm import AdvantageActorCriticLSTM
from aac_intrinsic import AdvantageActorCriticIntrinsic
from aac_duel import AdvantageActorCriticDuel
from aac_noisy import AdvantageActorCriticNoisy
from aac_big import AdvantageActorCriticBig
from doom_env import init_doom_env
from train_server import train
import vizdoom
if __name__ == '__main__':
_vzd_path = os.path.dirname(vizdoom.__file__)
parser = argparse.ArgumentParser(description='Doom Network')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('--episode_size', type=int, default=20, help='number of steps in an episode')
parser.add_argument('--batch_size', type=int, default=20, help='number of game instances running in parallel')
parser.add_argument('--episode_num', type=int, default=150000, help='number of episodes for training')
parser.add_argument('--episode_discount', type=float, default=0.95, help='number of episodes for training')
parser.add_argument('--seed', type=int, default=1, help='seed value')
parser.add_argument(
'--model',
default='aac',
choices=('aac', 'aac_lstm', 'aac_intrinsic', 'aac_duel', 'aac_noisy', 'aac_big'),
help='model to work with')
parser.add_argument('--base_model', default=None, help='path to base model file')
parser.add_argument('--action_set', default=None, help='model to work with')
parser.add_argument('--load', default=None, help='path to model file')
parser.add_argument('--vizdoom_config', default='environments/basic.cfg', help='vizdoom config path')
# Created by Andrey Kolishchak on 01/21/17.
#
import argparse
import os.path
from cuda import *
from aac import AdvantageActorCritic
from aac_lstm import AdvantageActorCriticLSTM
from aac_intrinsic import AdvantageActorCriticIntrinsic
from aac_duel import AdvantageActorCriticDuel
from doom_env import init_doom_env
from train_server import train
from test import test
import vizdoom
if __name__ == '__main__':
_vzd_path = os.path.dirname(vizdoom.__file__)
parser = argparse.ArgumentParser(description='Doom Network')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('--episode_size', type=int, default=30, help='number of steps in an episode')
parser.add_argument('--batch_size', type=int, default=10, help='number of game instances running in parallel')
parser.add_argument('--episode_num', type=int, default=15000, help='number of episodes for training')
parser.add_argument('--episode_discount', type=float, default=0.97, help='number of episodes for training')
parser.add_argument('--seed', type=int, default=1, help='seed value')
parser.add_argument('--model', default='aac', choices=('aac', 'aac_lstm', 'aac_intrinsic', 'aac_duel'), help='model to work with')
parser.add_argument('--base_model', default='aac_model_server_cp_start.pth', help='path to base model file')
parser.add_argument('--action_set', default='action_set_speed_shot_backward_right.npy', help='model to work with')
parser.add_argument('--load', default=None, help='path to model file')
#parser.add_argument('--vizdoom_config', default='environments/basic.cfg', help='vizdoom config path')
#parser.add_argument('--vizdoom_config', default='environments/rocket_basic.cfg', help='vizdoom config path')
parser.add_argument('--vizdoom_config', default='environments/cig_server.cfg', help='vizdoom config path')
#parser.add_argument('--vizdoom_config', default='environments/deathmatch.cfg', help='vizdoom config path')
# parser.add_argument('--vizdoom_config', default='environments/D3_battle.cfg', help='vizdoom config path')
def __init__(self, level: LevelSelection, seed: int, frame_skip: int, human_control: bool,
custom_reward_threshold: Union[int, float], visualization_parameters: VisualizationParameters,
cameras: List[CameraTypes], target_success_rate: float=1.0, **kwargs):
super().__init__(level, seed, frame_skip, human_control, custom_reward_threshold, visualization_parameters, target_success_rate)
self.cameras = cameras
# load the emulator with the required level
self.level = DoomLevel[level.upper()]
local_scenarios_path = path.join(os.path.dirname(os.path.realpath(__file__)), 'doom')
if 'COACH_LOCAL' in level:
self.scenarios_dir = local_scenarios_path
elif 'VIZDOOM_ROOT' in environ:
self.scenarios_dir = path.join(environ.get('VIZDOOM_ROOT'), 'scenarios')
else:
self.scenarios_dir = path.join(os.path.dirname(os.path.realpath(vizdoom.__file__)), 'scenarios')
self.game = vizdoom.DoomGame()
self.game.load_config(path.join(self.scenarios_dir, self.level.value))
self.game.set_window_visible(False)
self.game.add_game_args("+vid_forcesurface 1")
self.wait_for_explicit_human_action = True
if self.human_control:
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_640X480)
elif self.is_rendered:
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_320X240)
else:
# lower resolution since we actually take only 76x60 and we don't need to render
self.game.set_screen_resolution(vizdoom.ScreenResolution.RES_160X120)
self.game.set_render_hud(False)
'''
ViZDoom wrapper
'''
from __future__ import print_function
import sys
import os
vizdoom_path = '../../../../toolboxes/ViZDoom_2017_03_31'
sys.path = [os.path.join(vizdoom_path,'bin/python3')] + sys.path
import vizdoom
print(vizdoom.__file__)
import random
import time
import numpy as np
import re
import cv2
class DoomSimulator:
def __init__(self, args):
self.config = args['config']
self.resolution = args['resolution']
self.frame_skip = args['frame_skip']
self.color_mode = args['color_mode']
self.switch_maps = args['switch_maps']
self.maps = args['maps']
self.game_args = args['game_args']
#
# main.py, doom-net
#
# Created by Andrey Kolishchak on 01/21/17.
#
import argparse
import os.path
from model_utils import get_model
from doom_env import init_doom_env
import vizdoom
if __name__ == '__main__':
_vzd_path = os.path.dirname(vizdoom.__file__)
parser = argparse.ArgumentParser(description='Doom Network')
parser.add_argument('--mode', default='train', choices=('train', 'test'), help='train or test')
parser.add_argument('--learning_rate', type=float, default=5e-4, help='learning rate')
parser.add_argument('--episode_size', type=int, default=20, help='number of steps in an episode')
parser.add_argument('--batch_size', type=int, default=20, help='number of game instances running in parallel')
parser.add_argument('--episode_num', type=int, default=20000, help='number of episodes for training')
parser.add_argument('--epoch_game_steps', type=int, default=10000, help='number of steps per epoch')
parser.add_argument('--episode_discount', type=float, default=0.95, help='number of episodes for training')
parser.add_argument('--seed', type=int, default=1, help='seed value')
parser.add_argument(
'--model',
default='aac',
choices=('aac', 'aac_lstm', 'aac_noisy', 'aac_depth', 'aac_map', 'ppo', 'ppo_map', 'ppo_screen', 'mcts', 'state', 'es', 'planner'),
help='model to work with')
parser.add_argument('--base_model', default=None, help='path to base model file')
parser.add_argument('--state_model', default=None, help='path to state model file')