How to use visualdl - 10 common examples

To help you get started, we’ve selected a few visualdl examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github PaddlePaddle / VisualDL / visualdl / python / test_storage.py View on Github external
def test_modes(self):
        store = LogWriter(self.dir, sync_cycle=1)

        scalars = []

        for i in range(10):
            with store.mode("mode-%d" % i) as writer:
                scalar = writer.scalar("add/scalar0")
                scalars.append(scalar)

        for scalar in scalars[:-1]:
            for i in range(10):
                scalar.add_record(i, float(i))
github PaddlePaddle / VisualDL / visualdl / python / test_storage.py View on Github external
def setUp(self):
        self.dir = "./tmp/storage_test"
        self.writer = LogWriter(self.dir, sync_cycle=1).as_mode("train")
github PaddlePaddle / VisualDL / visualdl / python / test_storage.py View on Github external
def test_with_syntax(self):
        with self.writer.mode("train") as writer:
            scalar = writer.scalar("model/scalar/average")
            for i in range(10):
                scalar.add_record(i, float(i))

        self.writer.save()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            scalar = reader.scalar("model/scalar/average")
            self.assertEqual(scalar.caption(), "train")
github PaddlePaddle / VisualDL / visualdl / python / test_storage.py View on Github external
def test_check_image(self):
        '''
        check whether the storage will keep image data consistent
        '''
        print('check image')
        tag = "layer1/check/image1"
        image_writer = self.writer.image(tag, 10)

        image = Image.open("./dog.jpg")
        shape = [image.size[1], image.size[0], 3]
        origin_data = np.array(image.getdata()).flatten()

        self.writer.save()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:

            image_writer.start_sampling()
            image_writer.add_sample(shape, list(origin_data))
            image_writer.finish_sampling()

            # read and check whether the original image will be displayed
            image_reader = reader.image(tag)
            image_record = image_reader.record(0, 0)
            data = image_record.data()
            shape = image_record.shape()

            PIL_image_shape = (shape[0] * shape[1], shape[2])
            data = np.array(data, dtype='uint8').reshape(PIL_image_shape)
            print('origin', origin_data.flatten())
            print('data', data.flatten())
github PaddlePaddle / VisualDL / visualdl / python / test_storage.py View on Github external
image_writer = self.writer.image(tag, 10, 1)
        num_passes = 10
        num_samples = 100
        shape = [10, 10, 3]

        for pass_ in range(num_passes):
            image_writer.start_sampling()
            for ins in range(num_samples):
                data = np.random.random(shape) * 256
                data = np.ndarray.flatten(data)
                image_writer.add_sample(shape, list(data))
            image_writer.finish_sampling()

        self.writer.save()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            image_reader = reader.image(tag)
            self.assertEqual(image_reader.caption(), tag)
            self.assertEqual(image_reader.num_records(), num_passes)

            image_record = image_reader.record(0, 1)
            self.assertTrue(np.equal(image_record.shape(), shape).all())
            data = image_record.data()
            self.assertEqual(len(data), np.prod(shape))

            image_tags = reader.tags("image")
            self.assertTrue(image_tags)
            self.assertEqual(len(image_tags), 1)
github PaddlePaddle / VisualDL / visualdl / python / test_storage.py View on Github external
def test_scalar(self):
        print('test write')
        scalar = self.writer.scalar("model/scalar/min")
        # scalar.set_caption("model/scalar/min")
        for i in range(10):
            scalar.add_record(i, float(i))

        print('test read')
        self.writer.save()
        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            scalar = reader.scalar("model/scalar/min")
            self.assertEqual(scalar.caption(), "train")
            records = scalar.records()
            ids = scalar.ids()
            self.assertTrue(
                np.equal(records, [float(i) for i in range(10)]).all())
            self.assertTrue(np.equal(ids, [float(i) for i in range(10)]).all())
            print('records', records)
            print('ids', ids)
github PaddlePaddle / PaddleHub / paddlehub / finetune / finetune.py View on Github external
def _finetune_cls_task(task, data_reader, feed_list, config=None,
                       do_eval=False):
    main_program = task.main_program()
    startup_program = task.startup_program()
    loss = task.variable("loss")
    accuracy = task.variable("accuracy")

    num_epoch = config.num_epoch
    batch_size = config.batch_size
    log_writer = LogWriter(
        os.path.join(config.checkpoint_dir, "vdllog"), sync_cycle=1)

    place, dev_count = hub.common.get_running_device_info(config)
    with fluid.program_guard(main_program, startup_program):
        exe = fluid.Executor(place=place)
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)

        # select strategy
        if isinstance(config.strategy, hub.AdamWeightDecayStrategy):
            scheduled_lr = config.strategy.execute(loss, main_program,
                                                   data_reader, config)
        elif isinstance(config.strategy, hub.DefaultStrategy):
            config.strategy.execute(loss)
        #TODO: add more finetune strategy

        _do_memory_optimization(task, config)
github PaddlePaddle / VisualDL / demo / vdl_scratch.py View on Github external
#!/user/bin/env python
import os
import random

import numpy as np
from PIL import Image
from visualdl import ROOT, LogWriter
from visualdl.server.log import logger as log

logdir = './scratch_log'

logw = LogWriter(logdir, sync_cycle=30)

# create scalars in mode train and test.
with logw.mode('train') as logger:
    scalar0 = logger.scalar("scratch/scalar")

with logw.mode('test') as logger:
    scalar1 = logger.scalar("scratch/scalar")

# add scalar records.
last_record0 = 0.
last_record1 = 0.
for step in range(1, 100):
    last_record0 += 0.1 * (random.random() - 0.3)
    last_record1 += 0.1 * (random.random() - 0.7)
    scalar0.add_record(step, last_record0)
    scalar1.add_record(step, last_record1)
github PaddlePaddle / VisualDL / demo / paddle / paddle_cifar10.py View on Github external
# =======================================================================

from __future__ import print_function

import numpy as np
from visualdl import LogWriter

import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.initializer import NormalInitializer
from paddle.v2.fluid.param_attr import ParamAttr

# create VisualDL logger and directory
logdir = "./tmp"
logwriter = LogWriter(logdir, sync_cycle=10)

# create 'train' run
with logwriter.mode("train") as writer:
    # create 'loss' scalar tag to keep track of loss function
    loss_scalar = writer.scalar("loss")

with logwriter.mode("train") as writer:
    acc_scalar = writer.scalar("acc")

num_samples = 4
with logwriter.mode("train") as writer:
    conv_image = writer.image("conv_image", num_samples,
                              1)  # show 4 samples for every 1 step
    input_image = writer.image("input_image", num_samples, 1)

with logwriter.mode("train") as writer:
github yeyupiaoling / LearnPaddle2 / note10 / train.py View on Github external
import mobilenet_v2
import paddle as paddle
import paddle.dataset.cifar as cifar
import paddle.fluid as fluid
from visualdl import LogWriter

# 创建记录器
log_writer = LogWriter(dir='log/', sync_cycle=10)

# 创建训练和测试记录数据工具
with log_writer.mode('train') as writer:
    train_cost_writer = writer.scalar('cost')
    train_acc_writer = writer.scalar('accuracy')
    histogram = writer.histogram('histogram', num_buckets=50)

with log_writer.mode('test') as writer:
    test_cost_writer = writer.scalar('cost')
    test_acc_writer = writer.scalar('accuracy')

# 定义输入层
image = fluid.layers.data(name='image', shape=[3, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

# 获取分类器