How to use the uncertainties.unumpy.std_devs function in uncertainties

To help you get started, we’ve selected a few uncertainties examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github jhykes / rebin / test_rebin.py View on Github external
y_new_ref[3] = y_old[0] * area_subbins[4] / area_old[0]
    y_new_ref[4] = y_old[1] * area_subbins[5] / area_old[1]

    y_new_ref[5]  = y_old[1] * area_subbins[6] / area_old[1]
    y_new_ref[5] += y_old[2] * area_subbins[7] / area_old[2]
    y_new_ref[5] += y_old[3] * area_subbins[8] / area_old[3]

    # call rebin function
    y_new = rebin.rebin(x_old, y_old, x_new, interp_kind=3)

    # mean or nominal value comparison
    assert_allclose(unp.nominal_values(y_new),
                       unp.nominal_values(y_new_ref))

    # mean or nominal value comparison
    assert_allclose(unp.std_devs(y_new),
                       unp.std_devs(y_new_ref))
github jhykes / rebin / test_rebin.py View on Github external
y_old_ave[1] * (x_new[3] - x_new[2]),

         y_old_ave[1] * (x_old[2] - x_new[3]) +
         y_old_ave[2] * (x_new[4] - x_old[2]),

         y_old_ave[3] * (x_new[5] - x_old[3]) +
         y_old_ave[2] * (x_old[3] - x_new[4])])

    # mean or nominal value comparison
    # assert_allclose(unp.nominal_values(y_new),
    #                 unp.nominal_values(y_new_here))

    # mean or nominal value comparison
    assert_allclose(unp.std_devs(y_new),
                    unp.std_devs(y_new_here))
github lmfit / lmfit-py / lmfit / uncertainties / unumpy / test_unumpy.py View on Github external
def test_component_extraction():
    "Extracting the nominal values and standard deviations from an array"

    arr = unumpy.uarray(([1, 2], [0.1, 0.2]))

    assert numpy.all(unumpy.nominal_values(arr) == [1, 2])
    assert numpy.all(unumpy.std_devs(arr) == [0.1, 0.2])

    # unumpy matrices, in addition, should have nominal_values that
    # are simply numpy matrices (not unumpy ones, because they have no
    # uncertainties):
    mat = unumpy.matrix(arr)
    assert numpy.all(unumpy.nominal_values(mat) == [1, 2])
    assert numpy.all(unumpy.std_devs(mat) == [0.1, 0.2])
    assert type(unumpy.nominal_values(mat)) == numpy.matrix
github phoebe-project / phoebe2 / phoebe / units / uncertainties / __init__.py View on Github external
def std_devs(*args):
    """
    Wrapper for legacy code.  Obsolete: do not use.  Use ufloat
    instead.
    """
    import warnings
    warnings.warn("uncertainties.std_devs is obsolete."
                  "  Use uncertainties.unumpy.std_devs instead.",
                  DeprecationWarning,
                  stacklevel=2)
    import uncertainties.unumpy
    return uncertainties.unumpy.std_devs(*args)
github gammapy / gammapy / gammapy / spectrum / powerlaw.py View on Github external
def power_law_I_with_err(
    f_val=1, f_err=0, g_val=g_DEFAULT, g_err=0, e=1, e1=1, e2=E_INF
):
    """Evaluate power-law flux and propagate errors."""
    from uncertainties import unumpy

    f = unumpy.uarray(f_val, f_err)
    g = unumpy.uarray(g_val, g_err)
    _I = power_law_integral_flux(f, g, e, e1, e2)
    I_val = unumpy.nominal_values(_I)
    I_err = unumpy.std_devs(_I)
    return I_val, I_err
github rsnemmen / nmmn / nmmn / astro.py View on Github external
import uncertainties.unumpy as unumpy

    c=29979245800.	# speed of light in CGS
    dist=dist*3.085677581e24	# Mpc -> cm

    nu=10**lognu
    lamb=c/nu*1e4 # cm -> micron
    if llerr!=None:
    	lllerr=unumpy.uarray(ll,llerr)
    else:
    	lllerr=ll
    lnuerr=10**lllerr/nu  
    fluxerr=lnuerr/(1e-26*4.*numpy.pi*dist**2) # Lnu (erg/s/Hz) -> Fnu (mJy)
    if llerr!=None:
    	fluxerr=unumpy.log10(fluxerr)
    	return numpy.log10(lamb),unumpy.nominal_values(fluxerr),unumpy.std_devs(fluxerr)
    else:
    	return numpy.log10(lamb),numpy.log10(fluxerr)
github gammapy / gammapy / gammapy / spectrum / powerlaw.py View on Github external
def power_law_f_with_err(
    I_val=1, I_err=0, g_val=g_DEFAULT, g_err=0, e=1, e1=1, e2=E_INF
):
    """Evaluate power-law ``dnde`` and propagate errors."""
    from uncertainties import unumpy

    I = unumpy.uarray(I_val, I_err)
    g = unumpy.uarray(g_val, g_err)
    _f = power_law_flux(I, g, e, e1, e2)
    f_val = unumpy.nominal_values(_f)
    f_err = unumpy.std_devs(_f)
    return f_val, f_err