Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
- \\sum_{k=0}^{min(max\\_bins, len(x))} p_k log(p_k) \\cdot \\mathbf{1}_{(p_k > 0)}
where :math:`p_k` is the percentage of samples in bin :math:`k`.
:param x: the time series to calculate the feature of
:type x: pandas.Series
:param max_bins: the maximal number of bins
:type max_bins: int
:return: the value of this feature
:return type: float
"""
max_bins = [2, 4, 6, 8, 10, 20]
result = []
for value in max_bins:
result.append(ts_feature_calculators.binned_entropy(x, value))
return result
def function(x):
return binned_entropy(x, max_bins=self.max_bins)
"abs_change": feature_calculators.absolute_sum_of_changes(x=sig),
"mean_change": np.mean(diff),
"ratio_diff": (diff[diff >= 0].sum() + eps) / (diff[diff < 0].sum() + eps),
"abs_energy": feature_calculators.abs_energy(x=sig - np.mean(sig)),
"agg_autocorr_mean":
feature_calculators.agg_autocorrelation(x=sig, param=[{"f_agg": "mean", "maxlag": 10}])[0][
1],
"agg_autocorr_std":
feature_calculators.agg_autocorrelation(x=sig, param=[{"f_agg": "std", "maxlag": 10}])[0][
1],
"agg_autocorr_abs_mean":
feature_calculators.agg_autocorrelation(x=np.abs(sig), param=[{"f_agg": "mean", "maxlag": 10}])[0][1],
"agg_autocorr_abs_std":
feature_calculators.agg_autocorrelation(x=np.abs(sig), param=[{"f_agg": "std", "maxlag": 10}])[0][1],
"binned_entropy": feature_calculators.binned_entropy(x=sig, max_bins=250),
"cid_ce_normed": feature_calculators.cid_ce(x=sig, normalize=True),
}
mfcc = librosa.feature.mfcc(sig.astype(np.float64) - the_mean, n_mfcc=mfcc_size).mean(axis=1)
for i_mf, val in enumerate(mfcc):
sample['mfcc_%d' % i_mf] = val
return sample,